Suppr超能文献

帕金森病和小脑变性中的程序性学习

Procedural learning in Parkinson's disease and cerebellar degeneration.

作者信息

Pascual-Leone A, Grafman J, Clark K, Stewart M, Massaquoi S, Lou J S, Hallett M

机构信息

Human Cortical Physiology Unit, Human Motor Control Section, National Institutes of Health, Bethesda, MD.

出版信息

Ann Neurol. 1993 Oct;34(4):594-602. doi: 10.1002/ana.410340414.

Abstract

We compared procedural learning, translation of procedural knowledge into declarative knowledge, and use of declarative knowledge in age-matched normal volunteers (n = 30), patients with Parkinson's disease (n = 20), and patients with cerebellar degeneration (n = 15) by using a serial reaction time task. Patients with Parkinson's disease achieved procedural knowledge and used declarative knowledge of the task to improve performance, but they required a larger number of repetitions of the task to translate procedural knowledge into declarative knowledge. Patients with cerebellar degeneration did not show performance improvement due to procedural learning, failed to achieve declarative knowledge, and showed limited use of declarative knowledge of the task to improve their performance. Both basal ganglia and cerebellum are involved in procedural learning, but their roles are different. The normal influence of the basal ganglia on the prefrontal cortex may be required for timely access of information to and from the working memory buffer, while the cerebellum may index and order events in the time domain and be therefore essential for any cognitive functions involving sequences.

摘要

我们通过使用序列反应时任务,比较了年龄匹配的正常志愿者(n = 30)、帕金森病患者(n = 20)和小脑变性患者(n = 15)的程序性学习、程序性知识向陈述性知识的转化以及陈述性知识的运用。帕金森病患者获得了程序性知识,并运用任务的陈述性知识来提高表现,但他们需要对任务进行更多次重复,才能将程序性知识转化为陈述性知识。小脑变性患者未因程序性学习而表现出性能改善,未能获得陈述性知识,且在运用任务的陈述性知识来提高表现方面也很有限。基底神经节和小脑都参与程序性学习,但其作用不同。基底神经节对前额叶皮层的正常影响可能是信息及时进出工作记忆缓冲所必需的,而小脑可能在时域中对事件进行索引和排序,因此对于任何涉及序列的认知功能都至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验