Shearer G L, Kim K, Lee K M, Wang C K, Plapp B V
Department of Biochemistry, University of Iowa, Iowa City 52242.
Biochemistry. 1993 Oct 19;32(41):11186-94. doi: 10.1021/bi00092a031.
Liver alcohol dehydrogenase catalyzes the reaction of NAD+ and benzyl alcohol to form NADH and benzaldehyde by a predominantly ordered reaction. However, enzyme-alcohol binary and abortive ternary complexes form at high concentrations of benzyl alcohol, and benzaldehyde is slowly oxidized to benzoic acid. Steady-state and transient kinetic studies, equilibrium spectrophotometric measurements, product analysis, and kinetic simulations provide estimates of rate constants for a complete mechanism with the following reactions: (1) E<-->E-NAD+<-->E-NAD(+)-RCH2OH<-->E-NADH-RCHO<-->E-NADH<-->E ; (2) E-NADH<-->E-NADH-RCH2OH<-->E-RCH2OH<-->E; (3) E-NAD+<-->E-NAD(+)-RCHO-->E- NADH-RCOOH<-->E-NADH. The internal equilibrium constant for hydrogen transfer determined at 30 degrees C and pH 7 is about 5:1 in favor of E-NAD(+)-RCH2OH and has a complex pH dependence. Benzyl alcohol binds weakly to free enzyme (Kd = 7 mM) and significantly decreases the rates of binding of NAD+ and NADH. The reaction of NAD+ and benzyl alcohol is therefore kinetically ordered, not random. High concentrations of benzyl alcohol (> 1 mM) inhibit turnover by formation of the abortive E-NADH-RCH2-OH complex, which dissociates at 0.3 s-1 as compared to 6.3 s-1 for E-NADH. The oxidation of benzaldehyde by E-NAD+ (Km = 15 mM, V/E = 0.4 s-1) is inefficient relative to the oxidation of benzyl alcohol (Km = 28 microM, V/E = 3.1 s-1) and leads to a dismutation (2RCHO-->RCH2OH + RCOOH) as E-NADH reduces benzaldehyde. The results provide a description of final product distributions for the alternative reactions catalyzed by the multifunctional enzyme.
肝脏乙醇脱氢酶通过主要为有序反应催化NAD⁺与苄醇反应形成NADH和苯甲醛。然而,在高浓度苄醇条件下会形成酶 - 醇二元复合物和无效三元复合物,并且苯甲醛会缓慢氧化为苯甲酸。稳态和瞬态动力学研究、平衡分光光度测量、产物分析以及动力学模拟为包含以下反应的完整机制的速率常数提供了估计值:(1) E⇌E - NAD⁺⇌E - NAD⁺ - RCH₂OH⇌E - NADH - RCHO⇌E - NADH⇌E;(2) E - NADH⇌E - NADH - RCH₂OH⇌E - RCH₂OH⇌E;(3) E - NAD⁺⇌E - NAD⁺ - RCHO→E - NADH - RCOOH⇌E - NADH。在30℃和pH 7条件下测定的氢转移内部平衡常数约为5:1,有利于E - NAD⁺ - RCH₂OH,并且具有复杂的pH依赖性。苄醇与游离酶的结合较弱(Kd = 7 mM),并显著降低NAD⁺和NADH的结合速率。因此,NAD⁺与苄醇的反应在动力学上是有序的,而非随机的。高浓度苄醇(>1 mM)通过形成无效的E - NADH - RCH₂ - OH复合物抑制周转,该复合物的解离速率为0.3 s⁻¹,而E - NADH的解离速率为6.3 s⁻¹。相对于苄醇的氧化(Km = 28 μM, V/E = 3.1 s⁻¹),E - NAD⁺对苯甲醛的氧化(Km = 15 mM, V/E = 0.4 s⁻¹)效率较低,并且当E - NADH还原苯甲醛时会导致歧化反应(2RCHO→RCH₂OH + RCOOH)。这些结果描述了多功能酶催化的替代反应的最终产物分布情况。