Suppr超能文献

肝脏乙醇脱氢酶对大鼠体内酒精代谢的作用。

Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.

作者信息

Plapp Bryce V, Leidal Kevin G, Murch Bruce P, Green David W

机构信息

Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA.

出版信息

Chem Biol Interact. 2015 Jun 5;234:85-95. doi: 10.1016/j.cbi.2014.12.040. Epub 2015 Jan 29.

Abstract

The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified.

摘要

为了研究乙醇脱氢酶(ADH)以及其他影响酒精代谢速率的因素所起的作用,对纯化的大鼠肝脏乙醇脱氢酶氧化各种醇类的动力学与大鼠体内醇类消除的动力学进行了比较。伯醇(乙醇、1-丙醇、1-丁醇、2-甲基-1-丙醇、3-甲基-1-丁醇)和二醇(1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇)在大鼠体内以零级动力学消除,剂量为5 - 20 mmol/kg。乙醇消除最快,为7.9 mmol/kgh。仲醇(2-丙醇-d7、2-丙醇、2-丁醇、3-戊醇、环戊醇、环己醇)在剂量为5 - 10 mmol/kg时以一级动力学消除,相应的酮类生成并以零级或一级动力学缓慢消除。1 mmol/kg的4-甲基吡唑(一种良好的ADH抑制剂)平均抑制了各种醇类消除速率的73%(2-丙醇为55%,乙醇为90%),表明ADH在醇类代谢中起主要作用。体外研究(pH 7.3,37°C)中分离的大鼠肝脏酶的米氏动力学常数用于计算大鼠体内预期的相对代谢速率。消除速率通常随ADH活性增加而增加,但最佳底物的最大速率为6±1 mmol/kg h,这表明ADH活性并非唯一的限速因素。由于仲醇转化为酮类仅需一个NAD(+),而伯醇氧化为羧酸需要两当量的NAD(+),因此看来NADH氧化为NAD(+) 的速率并非这些醇类代谢的主要限制因素,但限速因素仍有待确定。

相似文献

1
Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.
Chem Biol Interact. 2015 Jun 5;234:85-95. doi: 10.1016/j.cbi.2014.12.040. Epub 2015 Jan 29.
2
Cutaneous metabolism of glycol ethers.
Arch Toxicol. 2005 Mar;79(3):160-8. doi: 10.1007/s00204-004-0619-3. Epub 2004 Nov 17.
4
Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).
DNA Repair (Amst). 2014 Nov;23:95-100. doi: 10.1016/j.dnarep.2014.09.005. Epub 2014 Oct 3.
10

引用本文的文献

6
Evaluation of intoxicating effects of liquor products on drunken mice.
Medchemcomm. 2016 Oct 5;8(1):122-129. doi: 10.1039/c6md00491a. eCollection 2017 Jan 1.
8
Does Oxidative Stress Induced by Alcohol Consumption Affect Orthodontic Treatment Outcome?
Front Physiol. 2017 Jan 25;8:22. doi: 10.3389/fphys.2017.00022. eCollection 2017.
9
Inversion of substrate stereoselectivity of horse liver alcohol dehydrogenase by substitutions of Ser-48 and Phe-93.
Chem Biol Interact. 2017 Oct 1;276:77-87. doi: 10.1016/j.cbi.2016.12.016. Epub 2016 Dec 23.

本文引用的文献

1
Origin and evolution of medium chain alcohol dehydrogenases.
Chem Biol Interact. 2013 Feb 25;202(1-3):91-6. doi: 10.1016/j.cbi.2012.11.008. Epub 2012 Nov 28.
2
Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs).
Chem Biol Interact. 2013 Feb 25;202(1-3):111-5. doi: 10.1016/j.cbi.2012.11.009. Epub 2012 Nov 29.
3
Analysis of mammalian alcohol dehydrogenase 5 (ADH5): characterisation of rat ADH5 with comparisons to the corresponding human variant.
Chem Biol Interact. 2013 Feb 25;202(1-3):97-103. doi: 10.1016/j.cbi.2012.11.002. Epub 2012 Nov 15.
4
Tertiary-Butanol: a toxicological review.
Crit Rev Toxicol. 2010 Sep;40(8):697-727. doi: 10.3109/10408444.2010.494249.
5
Functional assessment of human alcohol dehydrogenase family in ethanol metabolism: significance of first-pass metabolism.
Alcohol Clin Exp Res. 2006 Jul;30(7):1132-42. doi: 10.1111/j.1530-0277.2006.00139.x.
7
The metabolism and toxicity of methanol.
Pharmacol Rev. 1955 Sep;7(3):399-412.
8
Mouse alcohol dehydrogenase 4: kinetic mechanism, substrate specificity and simulation of effects of ethanol on retinoid metabolism.
Chem Biol Interact. 2001 Jan 30;130-132(1-3):445-56. doi: 10.1016/s0009-2797(00)00284-2.
9
CYP2E1 is not involved in early alcohol-induced liver injury.
Am J Physiol. 1999 Dec;277(6):G1259-67. doi: 10.1152/ajpgi.1999.277.6.G1259.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验