Suppr超能文献

用甲萘醌在缺乏甲基萘醌的枯草芽孢杆菌aro D的膜泡中重建还原型烟酰胺腺嘌呤二核苷酸氧化酶活性。电子传递与主动运输之间的关系。

Reconstitution of reduced nicotinamide adenine dinucleotide oxidase activity with menadione in membrane vesicles from the menaquinone-deficient Bacillus subtilis aro D. Relation between electron transfer and active transport.

作者信息

Bisschop A, Konings W N

出版信息

Eur J Biochem. 1976 Aug 16;67(2):357-65. doi: 10.1111/j.1432-1033.1976.tb10699.x.

Abstract

Membrane vesicles from the menaquinone-deficient Bacillus subtilis aro D contain a low content of menaquinone and consequently oxidaze reduced nicotinamide adenine dinucleotide (NADH) at low rate. Supplementation of the membrane vesicles suspension with the menaquinone-analogue menadione, results in an incorporation of menadione in the membranes. The incorporated menadione increases with the external menadione concentration up to a maximum of 7 nmol of menadione bound per mg membrane protein. The NADH oxidase activity of the membrane vesicles increases linearly with the menadione content and a 35-fold stimulation is obtained in fully reconstituted membrane vesicles; this maximal NADH oxidase activity is about two-fold higher than the NADH oxidase activity in membrane vesicles from wild-type B.subtilis W23. Supplementation of membrane vesicles from B.subtilis W23 with menadione also results in a stimulation of the NADH oxidase activity but only a stimulation of 1.6-fold is maximally obtained. The NADH oxidase activities in reconstituted B.subtilis aro D and B.subtilis W23 membrane vesicles are similarly affected by respiratory chain inhibitors, indicating that menadione occupies physiological sites of menaquinone. NADH and the non-physiological electron donor ascorbate + phenazine methosulphate are the best energy sources for active amino acid transport in membrane vesicles from B.subtilis W23. Membrane vesicles from B.subtilis aro D accumulate amino acids in the presence of acorbate + phenazine methosulphate, but not with NADH. However, membrane vesicles from this mutant, reconstituted with menadione, demonstrate NADH-driven transport activity. This activity increases linearly with the NADH oxidase activity, but maximal transprt activities are reached under conditions where the NADH oxidase activity is not yet maximal. These results indicate that the rate of energy supply is the limiting factor for transport at low NADH oxidase activities and that the transport system itself becomes the limiting factor for transport at low NADH oxidase activities and that the transport system itself becomes the limiting factor under conditions of high NADH oxidase activities. Under energy-limiting conditions 135-235 molecules of NADH have to be oxidized in order to transport one molecule of amino acid. At all levels of energy supply a competition by the different amino acid transport systems for the available energy could not be observed. These observations indicate that only a fraction of the energy, generated by the respiratory chain, is used for the transport of an amino acid and that the bulk of the energy dissipates via other channels in the membrane vesicles.

摘要

来自缺乏甲萘醌的枯草芽孢杆菌aro D的膜泡含有低含量的甲萘醌,因此以低速率氧化还原型烟酰胺腺嘌呤二核苷酸(NADH)。用甲萘醌类似物甲萘醌补充膜泡悬浮液,会导致甲萘醌掺入膜中。掺入的甲萘醌随外部甲萘醌浓度增加,最高可达每毫克膜蛋白结合7 nmol甲萘醌。膜泡的NADH氧化酶活性随甲萘醌含量呈线性增加,在完全重构的膜泡中可获得35倍的刺激;这种最大NADH氧化酶活性比野生型枯草芽孢杆菌W23的膜泡中的NADH氧化酶活性高约两倍。用甲萘醌补充枯草芽孢杆菌W23的膜泡也会导致NADH氧化酶活性的刺激,但最大只能获得1.6倍的刺激。重构的枯草芽孢杆菌aro D和枯草芽孢杆菌W23膜泡中的NADH氧化酶活性受到呼吸链抑制剂的类似影响,表明甲萘醌占据了甲萘醌的生理位点。NADH和非生理性电子供体抗坏血酸+吩嗪硫酸甲酯是枯草芽孢杆菌W23膜泡中活性氨基酸转运的最佳能量来源。枯草芽孢杆菌aro D的膜泡在抗坏血酸+吩嗪硫酸甲酯存在下积累氨基酸,但在NADH存在下则不积累。然而,用甲萘醌重构的该突变体的膜泡表现出NADH驱动的转运活性。这种活性随NADH氧化酶活性呈线性增加,但在NADH氧化酶活性尚未达到最大值的条件下达到最大转运活性。这些结果表明,在低NADH氧化酶活性下,能量供应速率是转运的限制因素,而在高NADH氧化酶活性条件下,转运系统本身成为限制因素。在能量限制条件下,为了转运一分子氨基酸,必须氧化135 - 235分子的NADH。在所有能量供应水平下,未观察到不同氨基酸转运系统对可用能量的竞争。这些观察结果表明,呼吸链产生的能量中只有一部分用于氨基酸的转运,而大部分能量通过膜泡中的其他通道耗散。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验