Suppr超能文献

枯草芽孢杆菌膜囊泡中的二羧酸转运

Dicarboxylic acid transport in membrane vesicles from Bacillus subtilis.

作者信息

Bisschop A, Doddema H, Konings W N

出版信息

J Bacteriol. 1975 Nov;124(2):613-22. doi: 10.1128/jb.124.2.613-622.1975.

Abstract

Membrane vesicles isolated from Bacillus subtilis W23 catalyze active transport of the C4 dicarboxylic acids L-malate, fumarate, and succinate under aerobic conditions in the presence of the electron donor reduced beta-nicotinamide adenine dinucleotide or the non-physiological electron donor system ascorbate-phenazine methosulfate. The dicarboxylic acids are accumulated in unmodified form. Inhibitors of the respiratory chain, sulfhydryl reagents, and uncoupling agents inhibit the accumulation of the dicarboxylic acids. The affinity constants for transport of L-malate, fumarate, and succinate are 13.5, 7.5, and 4.3 muM, respectively; these values are severalfold lower than those reported previously for whole cells. Active transport of these dicarboxylic acids occurs via one highly specific transport system as is indicated by the following observations. (i) Each dicarboxylic acid inhibits the transport of the other two dicarboxylic acids competitively. (ii) The affinity constants determined for the inhibitory action are very similar to those determined for the transport process. (iii) Each dicarboxylic acid exchanges rapidly with a previously accumulated dicarboxylic acid. (iv) Other metabolically and structurally related compounds do not inhibit transport of these dicarboxylic acids significantly, except for L-aspartate and L-glutamate. However, transport of these dicarboxylic amino acids is mediated by independent system because membrane vesicles from B. subtilis 60346, lacking functional dicarboxylic amino acid transport activity, accumulate the C4 dicarboxylic acids at even higher rates than vesicles from B. subtilis W 23. (v) A constant ratio exists between the initial rates of transport of L-malate, fumarate, and succinate in all membrane vesicle preparations isolated from cells grown on various media. This high-affinity dicarboxylic acid transport system seems to be present constitutively in B. subtilis W23.

摘要

从枯草芽孢杆菌W23中分离出的膜泡,在有氧条件下,于电子供体还原型β-烟酰胺腺嘌呤二核苷酸或非生理性电子供体系统抗坏血酸-吩嗪硫酸甲酯存在时,能催化C4二羧酸L-苹果酸、富马酸和琥珀酸的主动运输。二羧酸以未修饰的形式积累。呼吸链抑制剂、巯基试剂和解偶联剂会抑制二羧酸的积累。L-苹果酸、富马酸和琥珀酸运输的亲和常数分别为13.5、7.5和4.3 μM;这些值比之前报道的全细胞的值低几倍。这些二羧酸的主动运输通过一个高度特异性的运输系统进行,如下观察结果所示。(i) 每种二羧酸竞争性抑制其他两种二羧酸的运输。(ii) 测定的抑制作用的亲和常数与运输过程中测定的非常相似。(iii) 每种二羧酸都能与先前积累的二羧酸快速交换。(iv) 除L-天冬氨酸和L-谷氨酸外,其他代谢和结构相关化合物不会显著抑制这些二羧酸的运输。然而,这些二羧酸氨基酸的运输由独立系统介导,因为缺乏功能性二羧酸氨基酸运输活性的枯草芽孢杆菌60346的膜泡积累C4二羧酸的速率甚至比枯草芽孢杆菌W23的膜泡还要高。(v) 从在各种培养基上生长的细胞中分离的所有膜泡制剂中,L-苹果酸、富马酸和琥珀酸的初始运输速率之间存在恒定比例。这种高亲和力的二羧酸运输系统似乎在枯草芽孢杆菌W23中组成性存在。

相似文献

1
Dicarboxylic acid transport in membrane vesicles from Bacillus subtilis.
J Bacteriol. 1975 Nov;124(2):613-22. doi: 10.1128/jb.124.2.613-622.1975.
2
Properties of an inducible C 4 -dicarboxylic acid transport system in Bacillus subtilis.
J Bacteriol. 1973 Apr;114(1):65-79. doi: 10.1128/jb.114.1.65-79.1973.
3
Regulation of C4-dicarboxylic acid transport in Bacillus subtilis.
Can J Microbiol. 1975 Apr;21(4):527-36. doi: 10.1139/m75-075.
4
Active transport of manganese in isolated membrane vesicles of Bacillus subtilis.
J Bacteriol. 1975 Jul;123(1):123-7. doi: 10.1128/jb.123.1.123-127.1975.
5
C4-dicarboxylate transport in Bacillus subtilis studied with 3-fluoro-L-erythro-malate as a substrate.
J Bacteriol. 1974 Feb;117(2):373-8. doi: 10.1128/jb.117.2.373-378.1974.
8
Biochemical characterization of the C4-dicarboxylate transporter DctA from Bacillus subtilis.
J Bacteriol. 2010 Jun;192(11):2900-7. doi: 10.1128/JB.00136-10. Epub 2010 Apr 2.
9
Active transport of oxalate by Pseudomonas oxalaticus OX1.
Arch Microbiol. 1977 Nov 18;115(2):223-7. doi: 10.1007/BF00406378.

引用本文的文献

1
Identification of a gene encoding a transporter essential for utilization of C4 dicarboxylates in Corynebacterium glutamicum.
Appl Environ Microbiol. 2008 Sep;74(17):5290-6. doi: 10.1128/AEM.00832-08. Epub 2008 Jun 27.
3
Calcium transport in membrane vesicles of Bacillus subtilis.
J Bacteriol. 1985 Dec;164(3):1294-300. doi: 10.1128/jb.164.3.1294-1300.1985.
5
Comparison of the effects of two lipophilic acids, hexachlorophene and decanoate, on Bacillus subtilis.
Antimicrob Agents Chemother. 1977 Sep;12(3):357-67. doi: 10.1128/AAC.12.3.357.
6
Active transport of oxalate by Pseudomonas oxalaticus OX1.
Arch Microbiol. 1977 Nov 18;115(2):223-7. doi: 10.1007/BF00406378.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
Transport of L-glutamate and L-aspartate by membrane vesicles of Bacillus subtilis W 23.
FEBS Lett. 1972 Aug 15;24(3):260-264. doi: 10.1016/0014-5793(72)80368-5.
3
A Dicarboxyclic acid transport system in Bacillus subtilis.
FEBS Lett. 1972 Feb 1;20(2):137-140. doi: 10.1016/0014-5793(72)80777-4.
5
The uptake of C4-dicarboxylic acids by Escherichia coli.
Eur J Biochem. 1971 Jan;18(2):274-81. doi: 10.1111/j.1432-1033.1971.tb01240.x.
7
Studies of citrate transport in Aerobacter aerogenes: binding of citrate by a membrane bound oxalacetate decarboxylase.
Biochem Biophys Res Commun. 1971 Oct 15;45(2):402-8. doi: 10.1016/0006-291x(71)90833-3.
8
The transport of citrate and other tricarboxylic acids in two species of Pseudomonas.
Biochem J. 1971 Jul;123(4):571-7. doi: 10.1042/bj1230571.
9
A potassium-dependent citric acid transport system in Aerobacter aerogenes.
Biochem Biophys Res Commun. 1972 Mar 10;46(5):1944-50. doi: 10.1016/0006-291x(72)90074-5.
10
Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis.
J Bacteriol. 1971 Jun;106(3):848-55. doi: 10.1128/jb.106.3.848-855.1971.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验