Schreuder H A, Knight S, Curmi P M, Andersson I, Cascio D, Brändén C I, Eisenberg D
Molecular Biology Institute, University of California, Los Angeles 90024-1570.
Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9968-72. doi: 10.1073/pnas.90.21.9968.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzes the key first step in photosynthetic CO2 fixation, the reaction that incorporates CO2 into sugar. In this study, refined crystal structures of unactivated tobacco RuBisCO and activated RuBisCO from spinach and tobacco, in complex with the reaction-intermediate analog 2-carboxyarabinitol 1,5-bisphosphate (CABP), are compared. Both plant enzymes are hexadecameric complexes of eight large and eight small subunits with a total relative molecular mass of approximately 550,000. The comparison of activated and unactivated forms of RuBisCO provides insight into the dynamics of action of this enzyme. The catalytic site, which is open to the solvent in the unactivated enzyme, becomes shielded in the activated CABP complex. This shielding is accomplished by a 12-A movement of the active-site "loop 6" (residues 331-338) and a disorder-order transition of three loops near the active-site entrance, the N terminus, the C terminus, and a loop comprising residues 64-68. All these residues belong to the catalytic large subunit. Domain rotations of about 2 degrees are observed, also tightening the active-site cleft. These observations provide an explanation for the extremely tight binding (Kd < or = 10(-11) M) of the CABP molecule. A striking correlation exists between crystallographic temperature factors in the activated enzyme and the magnitude of the atomic movement upon activation.
核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)催化光合二氧化碳固定的关键第一步反应,即将二氧化碳掺入糖类的反应。在本研究中,对未活化的烟草RuBisCO以及菠菜和烟草的活化RuBisCO与反应中间体类似物2-羧基阿拉伯糖醇1,5-二磷酸(CABP)形成的复合物的精细晶体结构进行了比较。这两种植物酶均为由八个大亚基和八个小亚基组成的十六聚体复合物,总相对分子质量约为550,000。RuBisCO活化形式与未活化形式的比较为深入了解该酶的作用动力学提供了线索。在未活化的酶中向溶剂开放的催化位点,在活化的CABP复合物中被屏蔽。这种屏蔽是通过活性位点“环6”(残基331 - 338)移动12埃以及活性位点入口、N端、C端附近的三个环以及包含残基64 - 68的环从无序到有序的转变来实现的。所有这些残基均属于催化大亚基。还观察到约2度的结构域旋转,这也收紧了活性位点裂隙。这些观察结果解释了CABP分子的极强结合力(Kd≤10⁻¹¹ M)。活化酶中的晶体学温度因子与活化时原子移动的幅度之间存在显著相关性。