Mahuzier G, Prognon P, Sargi L, Kouwalti H, Tod M, Farinotti R
Laboratoire de Chimie Analytique II: Recherche en Méthodologie Bioanalytique, Faculté de Pharmacie, Châtenay-Malabry.
Ann Pharm Fr. 1993;51(3):135-53.
The emissions of light by biorganisms or these obtained by alchemists were known since long time ago but the are used in analytical chemistry only when STOKES discovered that the intensity of this light was proportional to the quantity of the matter. The very large sensibilities reached, associated with the great separation's ability of the liquid chromatography allows to develop new processes for quantification of very low concentrations of luminescent or no luminescent molecules. Many pharmaceutical, biological toxicological environmental or alimentary applications show that it is possible in liquid chromatography to obtain a detection limit about the pico or femtomole when simple chemical process are used: direct potentialization of luminescence by addition of modifiers of the chemical environment of the analytes: solvents, cyclodextrins, surfactants, metallic ions, indirect potentialization of the luminescence by transfer of energy from an excited molecule: sensitized fluorescence and phosphorescence, excitation of the molecule by a chemical reaction or chemiluminescence. These aspects are emphasized and illustrated by some examples in three articles.
生物发光或炼金术士获得的发光现象早在很久以前就为人所知,但直到斯托克斯发现这种光的强度与物质的量成正比时,它们才被用于分析化学。所达到的极高灵敏度,与液相色谱强大的分离能力相结合,使得开发用于定量极低浓度发光或不发光分子的新方法成为可能。许多制药、生物毒理学、环境或食品应用表明,当使用简单的化学方法时,在液相色谱中有可能获得皮摩尔或飞摩尔级别的检测限:通过添加分析物化学环境的改性剂直接增强发光,如溶剂、环糊精、表面活性剂、金属离子;通过激发分子的能量转移间接增强发光,如敏化荧光和磷光;通过化学反应激发分子或化学发光。这三篇文章中的一些例子强调并说明了这些方面。