Deber C M, Khan A R, Li Z, Joensson C, Glibowicka M, Wang J
Division of Biochemistry Research, Hospital for Sick Children, Toronto, ON, Canada.
Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11648-52. doi: 10.1073/pnas.90.24.11648.
Val-->Ala mutations within the effective transmembrane segment of a model single-spanning membrane protein, the 50-residue major coat (gene VIII) protein of bacteriophage M13, are shown to have sequence-dependent impacts on stabilization of membrane-embedded helical dimeric structures. Randomized mutagenesis performed on the coat protein hydrophobic segment 21-39 (YIGYAWAMV-VVIVGATIGI) produced a library of viable mutants which included those in which each of the four valine residues was replaced by an alanine residue. Significant variations found among these Val-->Ala mutants in the relative populations and thermal stabilities of monomeric and dimeric helical species observed on SDS/PAGE, and in the range of their alpha-helix-->beta-sheet transition temperatures confirmed that intramembranous valine residues are not simply universal contributors to membrane anchoring. Additional analyses of (i) nonmutatable sites in the mutant protein library, (ii) the properties of the double mutant V29A-V31A obtained by recycling mutant V31A DNA through mutagenesis procedures, and (iii) energy-minimized helical dimer structures of wild-type and mutant V31A transmembrane regions indicated that the transmembrane hydrophobic core helix of the M13 coat protein can be partitioned into alternating pairs of potential protein-interactive residues (V30, V31; G34, A35; G38, I39) and membrane-interactive residues (M28, V29; I32, V33; T36, I37). The overall results consitute an experimental approach to categorizing the distinctive contributions to structure of the residues comprising a protein-protein packing interface vs. those facing lipid and confirm the sequence-dependent capacity of specific residues within the transmembrane domain to modulate protein-protein interactions which underlie regulatory events in membrane proteins.
在一个单跨膜模型蛋白(噬菌体M13的50个氨基酸残基的主要衣壳蛋白(基因VIII))的有效跨膜区段内,缬氨酸到丙氨酸(Val-->Ala)的突变对膜嵌入螺旋二聚体结构的稳定性具有序列依赖性影响。对衣壳蛋白疏水区段21 - 39(YIGYAWAMV - VVIVGATIGI)进行随机诱变,产生了一个可行突变体文库,其中包括四个缬氨酸残基中的每一个都被丙氨酸残基取代的突变体。在SDS/PAGE上观察到的这些Val-->Ala突变体在单体和二聚体螺旋物种的相对丰度和热稳定性方面存在显著差异,并且它们的α - 螺旋到β - 折叠转变温度范围也证实,膜内缬氨酸残基并非简单地普遍参与膜锚定。对(i)突变体蛋白文库中的不可突变位点、(ii)通过诱变程序循环突变体V31A DNA获得的双突变体V29A - V31A的特性以及(iii)野生型和突变体V31A跨膜区域的能量最小化螺旋二聚体结构的进一步分析表明,M13衣壳蛋白的跨膜疏水核心螺旋可分为潜在的蛋白质相互作用残基(V30,V31;G34,A35;G38,I39)和膜相互作用残基(M28,V29;I32,V33;T36,I37)的交替对。总体结果构成了一种实验方法,用于区分构成蛋白质 - 蛋白质堆积界面的残基与面向脂质的残基对结构的独特贡献,并证实跨膜结构域内特定残基的序列依赖性能力,以调节作为膜蛋白调节事件基础的蛋白质 - 蛋白质相互作用。