Journois D, Safran D
Département d'Anesthésie-Réanimation, Hôpital Laennec, Paris.
Ann Fr Anesth Reanim. 1993;12(4):393-408. doi: 10.1016/s0750-7658(05)80107-8.
Mixed venous oxygen saturation (SvO2), measured on pulmonary artery blood, is a convenient indicator of matching between O2 transport (TaO2) and O2 body consumption (VO2). The measurement technique is based on the haemoglobin reflection spectrophotometry principle using two or three wave lengths. The Fick principle points out that SvO2 depends on five parameters: SvO2 = SaO2 - (VO2/CI x Hb x PO) where SaO2, CI and PO respectively represent arterial O2 saturation, cardiac index and O2 affinity. SvO2 does not always reflect tissue O2 tension: when considering a given value of SvO2, PvO2 will depend upon the position of the oxyhaemoglobin dissociation curve. It is impossible to establish in the absolute a "normal" value of SvO2. However, in most clinical circumstances, an SvO2 ranging from 60 to 80% attests that O2 tissue delivery is appropriate. Under certain conditions a continuous monitoring of SvO2 allows to assess another index such as ventilation-perfusion index or the O2 tissue extraction index. Usually SvO2 variations are more informative than the absolute SvO2 value. However, their interpretation should be cautious. First and foremost, the ability of each of the four main SvO2 determinants to influence the SvO2 is unequal as the numerical ranges of variation of these determinants are very different. Moreover, the attribution of a variation of SvO2 to one of its determinants implies that each of them is independent from the others, a feature which is very rarely seen in clinical practice. Finally as the mathematical relationship between SvO2 and its determinants is linear (SaO2 and VO2), or hyperbolic (CI and Hb), the weight of SaO2 or VO2 is independent of their absolute value, whereas CI or Hb weights will depend on their value. The limits of SvO2 monitoring are linked first to the occurrence of an anaerobic metabolism state when TaO2 becomes too low; SvO2 then just provides informations on the aerobic part of the metabolism. Moreover, SvO2 is just a global indicator for tissue O2 oxygenation status which does not give any indication about regional flow distribution. Therefore, SvO2 enables systemic imbalance supervision only. Finally, the existence of a right-to-left shunt will modify the SvO2 values through various mechanisms. However the SvO2 measured, in the pulmonary artery, remains reliable, whereas the presence of a left-to-right shunt will highly alter SvO2 basal value, only its time course remaining significant. SvO2 monitoring, element of diagnosis and monitoring, as well as a warning signal, has a priori specific indications poorly assessed, so far. (ABSTRACT TRUNCATED AT 400 WORDS)
混合静脉血氧饱和度(SvO2)通过肺动脉血测量,是氧输送(TaO2)与机体氧消耗(VO2)匹配情况的便捷指标。测量技术基于血红蛋白反射分光光度法原理,使用两个或三个波长。菲克原理指出,SvO2取决于五个参数:SvO2 = SaO2 - (VO2/CI×Hb×PO),其中SaO2、CI和PO分别代表动脉血氧饱和度、心脏指数和氧亲和力。SvO2并不总是反映组织氧张力:在考虑给定的SvO2值时,PvO2将取决于氧合血红蛋白解离曲线的位置。不可能绝对地确定SvO2的“正常”值。然而,在大多数临床情况下,SvO2在60%至80%之间表明氧向组织的输送是合适的。在某些情况下,连续监测SvO2可用于评估其他指标,如通气-灌注指数或组织氧摄取指数。通常,SvO2的变化比其绝对值更具信息量。然而,对其解释应谨慎。首先,四个主要的SvO2决定因素中每个因素影响SvO2的能力并不相同,因为这些决定因素的数值变化范围差异很大。此外,将SvO2的变化归因于其某个决定因素意味着它们彼此独立,而这一特征在临床实践中很少见。最后,由于SvO2与其决定因素之间的数学关系是线性的(SaO2和VO2)或双曲线的(CI和Hb),SaO2或VO2的权重与其绝对值无关,而CI或Hb的权重将取决于它们的值。SvO2监测的局限性首先与TaO2过低时无氧代谢状态的出现有关;此时SvO2仅提供有关代谢有氧部分的信息。此外,SvO2只是组织氧合状态的一个整体指标,并不提供关于局部血流分布的任何信息。因此,SvO2仅能监测全身失衡情况。最后,右向左分流的存在将通过各种机制改变SvO2值。然而,在肺动脉中测量的SvO2仍然可靠,而左向右分流的存在将极大地改变SvO2的基础值,只有其时间过程仍然有意义。SvO2监测作为诊断、监测以及一个警示信号的要素,到目前为止其有 priori 的特定适应症评估不足。(摘要截断于400字)