Department of Mathematics and Technology, RheinAhrCampus, University of Applied Sciences, Koblenz, Remagen, Germany.
PLoS Comput Biol. 2012;8(6):e1002548. doi: 10.1371/journal.pcbi.1002548. Epub 2012 Jun 21.
The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for survival. Potassium is the most abundant cation in living cells and is required for essential cellular processes, including the regulation of cell volume, pH and protein synthesis. Yeast cells can grow from low micromolar to molar potassium concentrations and utilize sophisticated control mechanisms to keep the internal potassium concentration in a viable range. We developed a mathematical model for Saccharomyces cerevisiae to explore the complex interplay between biophysical forces and molecular regulation facilitating potassium homeostasis. By using a novel inference method ("the reverse tracking algorithm") we predicted and then verified experimentally that the main regulators under conditions of potassium starvation are proton fluxes responding to changes of potassium concentrations. In contrast to the prevailing view, we show that regulation of the main potassium transport systems (Trk1,2 and Nha1) in the plasma membrane is not sufficient to achieve homeostasis.
细胞适应广泛环境条件的内在能力是生存所必需的基本过程。钾是活细胞中含量最丰富的阳离子,是包括细胞体积、pH 值和蛋白质合成在内的基本细胞过程所必需的。酵母细胞可以在低至微摩尔至摩尔浓度的钾环境中生长,并利用复杂的控制机制将细胞内的钾浓度保持在可行范围内。我们为酿酒酵母开发了一个数学模型,以探索促进钾离子稳态的生物物理力和分子调节之间的复杂相互作用。通过使用一种新的推理方法(“反向跟踪算法”),我们预测并随后通过实验验证,在钾饥饿条件下的主要调节因子是响应钾浓度变化的质子通量。与普遍观点相反,我们表明,质膜中主要钾转运系统(Trk1、2 和 Nha1)的调节不足以实现稳态。