Suppr超能文献

In vitro electrophysiology of developing genioglossal motoneurons in the rat.

作者信息

Núñez-Abades P A, Spielmann J M, Barrionuevo G, Cameron W E

机构信息

Department of Behavioral Neuroscience, University of Pittsburgh, Pennsylvania 15260.

出版信息

J Neurophysiol. 1993 Oct;70(4):1401-11. doi: 10.1152/jn.1993.70.4.1401.

Abstract
  1. Experiments were performed to determine the change in membrane properties of genioglossal (GG) motoneurons during development. Intracellular recordings were made in 127 GG motoneurons from rats postnatal ages 1-30 days. 2. The input resistance (R(in)) and the membrane time constant (t(aum)) decreased between 5-6 and 13-15 days from 84.8 +/- 25.4 (SD) to 47.0 +/- 18.9 M omega (P < 0.01) and from 10.0 +/- 4.2 to 7.3 +/- 3.3 ms (P < 0.05), respectively. During this period, the rheobase (Irh) increased (P < 0.01) from 0.13 +/- 0.07 to 0.27 +/- 0.14 nA, and the percentage of cells exhibiting inward rectification increased from 5 to 40%. Voltage threshold (Vthr) of the action potential remained unchanged postnatally. 3. There was also a postnatal change in the shape of the action potential. Specifically, between 1-2 and 5-6 days, there was a decrease (P < 0.05) in the spike half-width from 2.23 +/- 0.53 to 1.45 +/- 0.44 ms, resulting, in part, from a steepening (P < 0.05) of the slope of the falling phase of the action potential from 21.6 +/- 10.1 to 32.9 +/- 13.1 mV/ms. The slope of the rising phase also increased significantly (P < 0.01) between 1-2 and 13-15 days from 68.4 +/- 31.0 to 91.4 +/- 44.3 mV/ms. 4. The average duration of the medium afterhyperpolarization (mAHPdur) decreased (P < 0.05) between 1-2 (193 +/- 53 ms) and 5-6 days (159 +/- 43 ms). Whereas the mAHPdur was found to be independent of membrane potential, there was a linear relationship between the membrane potential and the amplitude of the medium AHP (mAHPamp). From this latter relationship, a reversal potential for the mAHPamp was extrapolated to be -87 mV. No evidence for the existence of a slow AHP was found in these developing motoneurons. 5. All cells analyzed (n = 74) displayed adaptation during the first three spikes. The subsequent firing pattern was classified into two groups, adapting and nonadapting. Cells at birth were all adapting, whereas all cells but two from animals 13 days and older were nonadapting. At the intermediate age (5-6 days), the minority (27%) was adapting and the majority (73%) was nonadapting. 6. The mean slope of primary range for the first interspike interval (1st ISI) was approximately 90 Hz/nA. This value was similar for both adapting and nonadapting cells and did not change postnatally.(ABSTRACT TRUNCATED AT 400 WORDS)
摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验