Miller K D
Division of Biology, California Institute of Technology, Pasadena 91125.
J Neurosci. 1994 Jan;14(1):409-41. doi: 10.1523/JNEUROSCI.14-01-00409.1994.
Neurons in the primary visual cortex of higher mammals respond selectively to light/dark borders of a particular orientation. The receptive fields of simple cells, a type of orientation-selective cell, consist of adjacent, oriented regions alternately receiving ON-center and OFF-center excitatory input. I show that this segregation of inputs within receptive fields can occur through an activity-dependent competition between ON-center and OFF-center inputs, just as segregation of inputs between different postsynaptic cells into ocular dominance columns appears to occur through activity-dependent competition between left-eye and right-eye inputs. These different outcomes are proposed to result, not from different mechanisms, but from different spatial structures of the correlations in neural activity among the competing inputs in each case. Simple cells result if ON-center inputs are best correlated with other ON-center inputs, and OFF with OFF, at small retinotopic separations, but ON-center inputs are best correlated with OFF-center inputs at larger separations. This hypothesis leads robustly to development of simple cell receptive fields selective for orientation and spatial frequency, and to the continuous and periodic arrangement of preferred orientation across the cortex. Input correlations determine the mean preferred spatial frequency and degree of orientation selectivity. Estimates of these correlations based on measurements in adult cat retina (Mastronarde, 1983a,b) produce quantitative predictions for the mean preferred spatial frequencies of cat simple cells across eccentricities that agree with experiments (Movshon et al., 1978b). Intracortical interactions are the primary determinant of cortical organization. Simple cell spatial phases can play a key role in this organization, so arrangements of spatial phases and preferred orientations may need to be studied together to understand either alone. Possible origins for other cortical features including spatial frequency clusters, afferent ON/OFF segregation, blobs, pinwheels, and opponent inhibition within simple cell receptive fields are suggested. A number of strong experimental tests of the hypothesis are proposed.
高等哺乳动物初级视觉皮层中的神经元对特定方向的亮/暗边界有选择性反应。简单细胞是一种方向选择性细胞,其感受野由相邻的、有方向的区域组成,这些区域交替接收中心兴奋型和周边抑制型兴奋性输入。我发现,感受野内输入的这种分离可以通过中心兴奋型和周边抑制型输入之间的活动依赖竞争来实现,就像不同突触后细胞之间的输入分离成眼优势柱似乎是通过左眼和右眼输入之间的活动依赖竞争来发生的一样。有人提出,这些不同的结果不是源于不同的机制,而是源于每种情况下竞争输入之间神经活动相关性的不同空间结构。如果中心兴奋型输入在小视网膜拓扑距离上与其他中心兴奋型输入最佳相关,而周边抑制型与周边抑制型最佳相关,但在较大距离上中心兴奋型输入与周边抑制型输入最佳相关,就会产生简单细胞。这个假设有力地导致了对方向和空间频率有选择性的简单细胞感受野的发展,以及跨皮层的偏好方向的连续和周期性排列。输入相关性决定了平均偏好空间频率和方向选择性程度。基于成年猫视网膜测量(马斯托纳德,1983a,b)对这些相关性的估计,对不同离心率下猫简单细胞的平均偏好空间频率产生了与实验相符的定量预测(莫夫尚等人,1978b)。皮层内相互作用是皮层组织的主要决定因素。简单细胞的空间相位在这种组织中可能起关键作用,因此可能需要一起研究空间相位和偏好方向的排列才能单独理解其中任何一个。文中还提出了其他皮层特征的可能起源,包括空间频率簇、传入中心兴奋型/周边抑制型分离、斑点、风车以及简单细胞感受野内的拮抗抑制。文中还提出了对该假设的一些有力实验测试。