Suppr超能文献

Efficient construction of high-resolution physical maps from yeast artificial chromosomes using radiation hybrids: inner product mapping.

作者信息

Perlin M, Chakravarti A

机构信息

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

出版信息

Genomics. 1993 Nov;18(2):283-9. doi: 10.1006/geno.1993.1467.

Abstract

For the positional cloning of genes and other novel types of genetic experiments, in humans and other organisms, there is a crucial need for techniques with which genome-wide high-resolution ordered clone maps can be rapidly constructed. Current best methods, such as sequence-tagged site (STS) content mapping, entail a large number of experiments and, in practice, require large low-resolution yeast artificial chromosome (YAC) clones and very many STSs. In this paper, we introduce a new approach, inner product mapping (IPM), that overcomes these limitations. IPM uses radiation hybrids (RHs) to provide localizing signatures for YACs. Two independent data tables that compare YACs against RHs and RHs against STSs are obtained; these tables are combined to produce a computed map of the YACs against ordered STSs. IPM maps each YAC independently, requires relatively few RH comparisons to map a YAC, and can work with small (or large) YACs and few (or many) STSs. This paper describes IPM and presents computer simulations supporting the efficiency of IPM over that of competing methods.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验