Morecraft R J, Van Hoesen G W
Department of Anatomy and Structural Biology, University of South Dakota School of Medicine, Vermillion 57069.
J Comp Neurol. 1993 Nov 22;337(4):669-89. doi: 10.1002/cne.903370411.
Although frontal lobe interconnections of the primary (area 4 or M1) and supplementary (area 6m or M2) motor cortices are well understood, how frontal granular (or prefrontal) cortex influences these and other motor cortices is not. Using fluorescent dyes in rhesus monkeys, we investigated the distribution of frontal lobe inputs to M1, M2, and the cingulate motor cortex (area 24c or M3, and area 23c). M1 received input from M2, lateral area 6, areas 4C and PrCO, and granular area 12. M2 received input from these same areas as well as M1; granular areas 45, 8, 9, and 46; and the lateral part of the orbitofrontal cortex. Input from the ventral part of lateral area 6, area PrCO, and frontal granular cortex targeted only the ventral portion of M1, and primarily the rostral portion of M2. In contrast, M3 and area 23c received input from M1, M2; lateral area 6 and area 4C; granular areas 8, 12, 9, 46, 10, and 32; as well as orbitofrontal cortex. Only M3 received input from the ventral part of lateral area 6 and areas PrCO, 45, 12vl, and the posterior part of the orbitofrontal cortex. This diversity of frontal lobe inputs, and the heavy component of prefrontal input to the cingulate motor cortex, suggests a hierarchy among the motor cortices studied. M1 receives the least diverse frontal lobe input, and its origin is largely from other agranular motor areas. M2 receives more diverse input, arising primarily from agranular motor and prefrontal association cortices. M3 and area 23c receive both diverse and widespread frontal lobe input, which includes agranular motor, prefrontal association, and frontal limbic cortices. These connectivity patterns suggest that frontal association and frontal limbic areas have direct and preferential access to that part of the corticospinal projection which arises from the cingulate motor cortex.
虽然初级运动皮层(4区或M1)和辅助运动皮层(6m区或M2)的额叶连接已为人所熟知,但额叶颗粒(或前额叶)皮层如何影响这些及其他运动皮层却并不清楚。我们在恒河猴身上使用荧光染料,研究了额叶向M1、M2和扣带运动皮层(24c区或M3以及23c区)的输入分布。M1接收来自M2、外侧6区、4C区和PrCO区以及颗粒12区的输入。M2接收来自与M1相同的这些区域以及颗粒45区、8区、9区和46区,还有眶额叶皮层外侧部分的输入。来自外侧6区腹侧部分、PrCO区和额叶颗粒皮层的输入仅靶向M1的腹侧部分,主要是M2的嘴侧部分。相比之下,M3和23c区接收来自M1、M2、外侧6区和4C区、颗粒8区、12区、9区、46区、10区和32区以及眶额叶皮层的输入。只有M3接收来自外侧6区腹侧部分、PrCO区、45区、12vl区以及眶额叶皮层后部的输入。额叶输入的这种多样性,以及前额叶输入对扣带运动皮层的重要组成部分,表明在所研究的运动皮层之间存在层级关系。M1接收的额叶输入种类最少,其来源主要是其他无颗粒运动区。M2接收的输入更多样化,主要来自无颗粒运动和前额叶联合皮层。M3和23c区接收多样且广泛的额叶输入,包括无颗粒运动、前额叶联合和额叶边缘皮层。这些连接模式表明,前额叶联合和额叶边缘区域可以直接且优先接触到源自扣带运动皮层的皮质脊髓投射部分。