Saito K, Nomura M
Department of Biological Chemistry, University of California, Irvine 92717-1700.
J Mol Biol. 1994 Jan 7;235(1):125-39. doi: 10.1016/s0022-2836(05)80021-x.
In the Escherichia coli str operon, translation of the S12 and S7 genes is largely coupled, and the translational repressor S7 inhibits S7 translation, which is coupled to that of S12, but does not inhibit independent translation of S7 by free ribosomes in the intracellular pool. We have studied the S12-S7 intercistronic region of mRNA by analyzing RNA synthesized in vitro using structure-specific nucleases and a chemical probe, dimethyl sulfate. Based on the results obtained, we have deduced a secondary structure model of the S12-S7 intercistronic region and identified nucleotide residues "protected" by S7. We then carried out site-directed mutagenesis to identify nucleotide residues important for S7 translation as well as for repression by S7. The results showed that two distinct regions are important for S7-mediated repression; one is the S7 binding region identified by the protection analysis and the second is the stem structure that sequesters the Shine-Dalgarno sequence for the S7 gene. Some of the base alterations in the first region abolished S7 binding and, as a consequence, abolished S7-mediated repression, without affecting the efficiency of S7 translation. Other mutations disrupting the stem structure in the second region abolished S7-mediated repression without significantly affecting the S7-mRNA interaction. We also found that certain mutations drastically decrease S7 translation achieved by translational coupling without affecting S7 translation achieved by independent initiation. These mutations are in base-paired regions and evidence was obtained to suggest that these base-paired structures are important for translational coupling. We suggest that some specific RNA structures in the intercistronic region play an active role in achieving translational coupling in this system, and that repression of S7 translation by S7 protein is due to disruption of such structures induced by binding of S7 protein to the target site, rendering translational coupling very inefficient, but leaving independent translation initiation unaffected.
在大肠杆菌str操纵子中,S12和S7基因的翻译在很大程度上是偶联的,翻译阻遏物S7抑制与S12基因翻译偶联的S7基因的翻译,但不抑制细胞内游离核糖体对S7基因的独立翻译。我们通过使用结构特异性核酸酶和化学探针硫酸二甲酯分析体外合成的RNA,研究了mRNA的S12 - S7基因间区域。基于所得结果,我们推导了S12 - S7基因间区域的二级结构模型,并鉴定了被S7“保护”的核苷酸残基。然后我们进行了定点诱变,以鉴定对S7基因翻译以及S7阻遏作用重要的核苷酸残基。结果表明,有两个不同的区域对S7介导的阻遏作用很重要;一个是通过保护分析鉴定出的S7结合区域,另一个是隔离S7基因Shine - Dalgarno序列的茎结构。第一个区域中的一些碱基改变消除了S7的结合,结果也消除了S7介导的阻遏作用,但不影响S7基因的翻译效率。破坏第二个区域茎结构的其他突变消除了S7介导的阻遏作用,而对S7与mRNA的相互作用没有显著影响。我们还发现,某些突变会大幅降低通过翻译偶联实现的S在大肠杆菌str操纵子中,S12和S7基因的翻译在很大程度上是偶联的,翻译阻遏物S7抑制与S12基因翻译偶联的S7基因的翻译,但不抑制细胞内游离核糖体对S7基因的独立翻译。我们通过使用结构特异性核酸酶和化学探针硫酸二甲酯分析体外合成的RNA,研究了mRNA的S12 - S7基因间区域。基于所得结果,我们推导了S12 - S7基因间区域的二级结构模型,并鉴定了被S7“保护”的核苷酸残基。然后我们进行了定点诱变,以鉴定对S7基因翻译以及S7阻遏作用重要的核苷酸残基。结果表明,有两个不同的区域对S7介导的阻遏作用很重要;一个是通过保护分析鉴定出的S7结合区域,另一个是隔离S7基因Shine - Dalgarno序列的茎结构。第一个区域中的一些碱基改变消除了S7的结合,结果也消除了S7介导的阻遏作用,但不影响S7基因的翻译效率。破坏第二个区域茎结构的其他突变消除了S7介导的阻遏作用,而对S7与mRNA的相互作用没有显著影响。我们还发现,某些突变会大幅降低通过翻译偶联实现的S7翻译,但不影响通过独立起始实现的S7翻译。这些突变位于碱基配对区域,并且有证据表明这些碱基配对结构对翻译偶联很重要。我们认为,基因间区域中的一些特定RNA结构在该系统中实现翻译偶联方面发挥着积极作用,并且S7蛋白对S7基因翻译的阻遏是由于S7蛋白与靶位点结合诱导此类结构的破坏,使得翻译偶联效率极低,但不影响独立的翻译起始。 7翻译,但不影响通过独立起始实现的S7翻译。这些突变位于碱基配对区域,并且有证据表明这些碱基配对结构对翻译偶联很重要。我们认为,基因间区域中的一些特定RNA结构在该系统中实现翻译偶联方面发挥着积极作用,并且S7蛋白对S7基因翻译的阻遏是由于S7蛋白与靶位点结合诱导此类结构的破坏,使得翻译偶联效率极低,但不影响独立的翻译起始。