Suppr超能文献

可兴奋介质中的易损性:引发单向传播的分析与数值研究

Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation.

作者信息

Starmer C F, Biktashev V N, Romashko D N, Stepanov M R, Makarova O N, Krinsky V I

机构信息

Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina 27710.

出版信息

Biophys J. 1993 Nov;65(5):1775-87. doi: 10.1016/S0006-3495(93)81233-5.

Abstract

Cardiac tissue can display unusual responses to certain stimulation protocols. In the wake of a conditioning wave of excitation, spiral waves can be initiated by applying stimuli timed to occur during a period of vulnerability (VP). Although vulnerability is well known in cardiac and chemical media, the determinants of the VP and its boundaries have received little theoretical and analytical study. From numerical and analytical studies of reaction-diffusion equations, we have found that 1) vulnerability is an inherent property of Beeler-Reuter and FitzHugh-Nagumo models of excitable media; 2) the duration of the vulnerable window (VW) the one-dimensional analog of the VP, is sensitive to the medium properties and the size of the stimulus field; and 3) the amplitudes of the excitatory and recovery processes modulate the duration of the VW. The analytical results reveal macroscopic behavior (vulnerability) derived from the diffusion of excitation that is not observable at the level of isolated cells or single reaction units.

摘要

心脏组织对某些刺激方案可能会表现出异常反应。在一次适应性兴奋波之后,通过在易损期(VP)内适时施加刺激,可以引发螺旋波。尽管易损性在心脏和化学介质中是广为人知的,但关于易损期及其边界的决定因素却很少有理论和分析研究。通过对反应扩散方程的数值和分析研究,我们发现:1)易损性是可兴奋介质的Beeler-Reuter模型和FitzHugh-Nagumo模型的固有属性;2)易损窗口(VW,VP的一维类似物)的持续时间对介质特性和刺激场大小敏感;3)兴奋和恢复过程的幅度调节VW的持续时间。分析结果揭示了由兴奋扩散产生的宏观行为(易损性),而这种行为在孤立细胞或单个反应单元水平上是无法观察到的。

相似文献

3
Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core.
Biophys J. 1998 Jul;75(1):1-14. doi: 10.1016/S0006-3495(98)77490-9.
4
New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.
PLoS One. 2011;6(11):e27264. doi: 10.1371/journal.pone.0027264. Epub 2011 Nov 14.
5
Predicting the entrainment of reentrant cardiac waves using phase resetting curves.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 1):021908. doi: 10.1103/PhysRevE.65.021908. Epub 2002 Jan 24.
6
Spiral waves in excitable media with negative restitution.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Apr;63(4 Pt 1):041912. doi: 10.1103/PhysRevE.63.041912. Epub 2001 Mar 29.
7
Correspondence between discrete and continuous models of excitable media: trigger waves.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1997 Mar;55(3 Pt B):3215-33. doi: 10.1103/physreve.55.3215.
8
Drift and breakup of spiral waves in reaction-diffusion-mechanics systems.
Proc Natl Acad Sci U S A. 2007 May 8;104(19):7922-6. doi: 10.1073/pnas.0701895104. Epub 2007 Apr 27.
9
Negative tension of scroll wave filaments and turbulence in three-dimensional excitable media and application in cardiac dynamics.
Bull Math Biol. 2013 Aug;75(8):1351-76. doi: 10.1007/s11538-012-9748-7. Epub 2012 Jul 25.
10
Formation of fast spirals on heterogeneities of an excitable medium.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):012901. doi: 10.1103/PhysRevE.78.012901. Epub 2008 Jul 22.

引用本文的文献

1
Biomimetic Cardiac Tissue Models for In Vitro Arrhythmia Studies.
Biomimetics (Basel). 2023 Oct 14;8(6):487. doi: 10.3390/biomimetics8060487.
3
Mechanisms of vortices termination in the cardiac muscle.
R Soc Open Sci. 2017 Mar 15;4(3):170024. doi: 10.1098/rsos.170024. eCollection 2017 Mar.
4
KChIP2 is a core transcriptional regulator of cardiac excitability.
Elife. 2017 Mar 6;6:e17304. doi: 10.7554/eLife.17304.
5
Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention.
Ann Biomed Eng. 2016 Sep;44(9):2642-60. doi: 10.1007/s10439-016-1628-0. Epub 2016 May 2.
6
Predicting the risk of sudden cardiac death.
J Physiol. 2016 May 1;594(9):2445-58. doi: 10.1113/JP270535. Epub 2016 Feb 2.
7
Computational Models for Predictive Cardiac Ion Channel Pharmacology.
Drug Discov Today Dis Models. 2014 Winter;14:3-10. doi: 10.1016/j.ddmod.2014.04.001. Epub 2014 Aug 5.
9
How Does the Xenopus laevis Embryonic Cell Cycle Avoid Spatial Chaos?
Cell Rep. 2015 Aug 4;12(5):892-900. doi: 10.1016/j.celrep.2015.06.070. Epub 2015 Jul 23.
10
Deranged sodium to sudden death.
J Physiol. 2015 Mar 15;593(6):1331-45. doi: 10.1113/jphysiol.2014.281204.

本文引用的文献

1
Impulses and Physiological States in Theoretical Models of Nerve Membrane.
Biophys J. 1961 Jul;1(6):445-66. doi: 10.1016/s0006-3495(61)86902-6.
2
Computer simulation of arrhythmias in a network of coupled excitable elements.
Circ Res. 1980 Sep;47(3):454-66. doi: 10.1161/01.res.47.3.454.
8
Frequency-dependent effects of amitriptyline on ventricular conduction and cardiac rhythm in dogs.
Circulation. 1985 Oct;72(4):898-906. doi: 10.1161/01.cir.72.4.898.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验