Hornung D, Biktashev V N, Otani N F, Shajahan T K, Baig T, Berg S, Han S, Krinsky V I, Luther S
Max Planck Institute DS , BMPG, Gottingen, Germany.
University of Exeter , Exeter, UK.
R Soc Open Sci. 2017 Mar 15;4(3):170024. doi: 10.1098/rsos.170024. eCollection 2017 Mar.
We propose a solution to a long-standing problem: how to terminate multiple vortices in the heart, when the locations of their cores and their critical time windows are unknown. We scan the phases of all pinned vortices in parallel with electric field pulses (E-pulses). We specify a condition on pacing parameters that guarantees termination of one vortex. For more than one vortex with significantly different frequencies, the success of scanning depends on chance, and all vortices are terminated with a success rate of less than one. We found that a similar mechanism terminates also a free (not pinned) vortex. A series of about 500 experiments with termination of ventricular fibrillation by E-pulses in pig isolated hearts is evidence that pinned vortices, hidden from direct observation, are significant in fibrillation. These results form a physical basis needed for the creation of new effective low energy defibrillation methods based on the termination of vortices underlying fibrillation.
当心脏中多个涡旋的核心位置及其关键时间窗口未知时,如何终止这些涡旋。我们通过电场脉冲(E脉冲)并行扫描所有固定涡旋的相位。我们指定了一个起搏参数条件,该条件可确保一个涡旋的终止。对于频率显著不同的多个涡旋,扫描的成功取决于机会,并且所有涡旋的终止成功率均小于1。我们发现,类似的机制也能终止自由(未固定)涡旋。在猪离体心脏中通过E脉冲终止心室颤动的一系列约500次实验证明,隐藏于直接观察之外的固定涡旋在颤动中具有重要意义。这些结果构成了基于终止颤动背后的涡旋来创建新的有效低能量除颤方法所需的物理基础。