Correll C C, Ludwig M L, Bruns C M, Karplus P A
Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.
Protein Sci. 1993 Dec;2(12):2112-33. doi: 10.1002/pro.5560021212.
The structure of phthalate dioxygenase reductase (PDR), a monomeric iron-sulfur flavoprotein that delivers electrons from NADH to phthalate dioxygenase, is compared to ferredoxin-NADP+ reductase (FNR) and ferredoxin, the proteins that reduce NADP+ in the final reaction of photosystem I. The folding patterns of the domains that bind flavin, NAD(P), and [2Fe-2S] are very similar in the two systems. Alignment of the X-ray structures of PDR and FNR substantiates the assignment of features that characterize a family of flavoprotein reductases whose members include cytochrome P-450 reductase, sulfite and nitrate reductases, and nitric oxide synthase. Hallmarks of this subfamily of flavoproteins, here termed the FNR family, are an antiparallel beta-barrel that binds the flavin prosthetic group, and a characteristic variant of the classic pyridine nucleotide-binding fold. Despite the similarities between FNR and PDR, attempts to model the structure of a dissociable FNR:ferredoxin complex by analogy with PDR reveal features that are at odds with chemical crosslinking studies (Zanetti, G., Morelli, D., Ronchi, S., Negri, A., Aliverti, A., & Curti, B., 1988, Biochemistry 27, 3753-3759). Differences in the binding sites for flavin and pyridine nucleotides determine the nucleotide specificities of FNR and PDR. The specificity of FNR for NADP+ arises primarily from substitutions in FNR that favor interactions with the 2' phosphate of NADP+. Variations in the conformation and sequences of the loop adjoining the flavin phosphate affect the selectivity for FAD versus FMN. The midpoint potentials for reduction of the flavin and [2Fe-2S] groups in PDR are higher than their counterparts in FNR and spinach ferredoxin, by about 120 mV and 260 mV, respectively. Comparisons of the structure of PDR with spinach FNR and with ferredoxin from Anabaena 7120, along with calculations of electrostatic potentials, suggest that local interactions, including hydrogen bonds, are the dominant contributors to these differences in potential.
邻苯二甲酸双加氧酶还原酶(PDR)是一种单体铁硫黄素蛋白,负责将电子从NADH传递给邻苯二甲酸双加氧酶,其结构与铁氧化还原蛋白-NADP⁺还原酶(FNR)和铁氧化还原蛋白进行了比较,后两者在光系统I的最终反应中负责还原NADP⁺。在这两个系统中,结合黄素、NAD(P)和[2Fe-2S]的结构域的折叠模式非常相似。PDR和FNR的X射线结构比对证实了一类黄素蛋白还原酶家族特征的归属,该家族成员包括细胞色素P-450还原酶、亚硫酸盐和硝酸盐还原酶以及一氧化氮合酶。这个黄素蛋白亚家族,这里称为FNR家族,其特征是一个结合黄素辅基的反平行β桶结构,以及经典吡啶核苷酸结合折叠的一个特征变体。尽管FNR和PDR之间存在相似性,但试图通过类比PDR来模拟可解离的FNR:铁氧化还原蛋白复合物的结构,却揭示出与化学交联研究结果不一致的特征(Zanetti, G., Morelli, D., Ronchi, S., Negri, A., Aliverti, A., & Curti, B., 1988, Biochemistry 27, 3753 - 3759)。黄素和吡啶核苷酸结合位点的差异决定了FNR和PDR的核苷酸特异性。FNR对NADP⁺的特异性主要源于FNR中的取代,这些取代有利于与NADP⁺的2'磷酸基团相互作用。与黄素磷酸相邻的环的构象和序列变化影响了对FAD与FMN的选择性。PDR中黄素和[2Fe-2S]基团还原的中点电位分别比FNR和菠菜铁氧化还原蛋白中的对应电位高约120 mV和260 mV。将PDR的结构与菠菜FNR以及鱼腥藻7120的铁氧化还原蛋白进行比较,同时进行静电势计算,结果表明包括氢键在内的局部相互作用是这些电位差异的主要贡献因素。