Krämer Moritz, Kunz Hans-Henning
Department I, Plant Biochemistry and Physiology, Ludwig-Maximilians-University Munich, Munich, Germany.
Front Plant Sci. 2021 Oct 20;12:719003. doi: 10.3389/fpls.2021.719003. eCollection 2021.
Plant productivity greatly relies on a flawless concerted function of the two photosystems (PS) in the chloroplast thylakoid membrane. While damage to PSII can be rapidly resolved, PSI repair is complex and time-consuming. A major threat to PSI integrity is acceptor side limitation e.g., through a lack of stromal NADP ready to accept electrons from PSI. This situation can occur when oscillations in growth light and temperature result in a drop of CO fixation and concomitant NADPH consumption. Plants have evolved a plethora of pathways at the thylakoid membrane but also in the chloroplast stroma to avoid acceptor side limitation. For instance, reduced ferredoxin can be recycled in cyclic electron flow or reducing equivalents can be indirectly exported from the organelle via the malate valve, a coordinated effort of stromal malate dehydrogenases and envelope membrane transporters. For a long time, the NADP(H) was assumed to be the only nicotinamide adenine dinucleotide coenzyme to participate in diurnal chloroplast metabolism and the export of reductants via this route. However, over the last years several independent studies have indicated an underappreciated role for NAD(H) in illuminated leaf plastids. In part, it explains the existence of the light-independent NAD-specific malate dehydrogenase in the stroma. We review the history of the malate valve and discuss the potential role of stromal NAD(H) for the plant survival under adverse growth conditions as well as the option to utilize the stromal NAD(H) pool to mitigate PSI damage.
植物生产力在很大程度上依赖于叶绿体类囊体膜中两个光系统(PS)完美协同发挥作用。虽然对PSII的损伤能够迅速修复,但PSI的修复过程复杂且耗时。对PSI完整性的一个主要威胁是受体侧限制,例如由于缺乏能够从PSI接受电子的基质NADP。当生长光照和温度的波动导致CO固定下降以及伴随的NADPH消耗时,就会出现这种情况。植物已经在类囊体膜以及叶绿体基质中进化出了大量途径来避免受体侧限制。例如,还原型铁氧还蛋白可以通过循环电子流进行再循环,或者还原当量可以通过苹果酸阀从细胞器间接输出,这是基质苹果酸脱氢酶和包膜膜转运蛋白的协同作用。长期以来,NADP(H)被认为是唯一参与昼夜叶绿体代谢以及通过该途径输出还原剂的烟酰胺腺嘌呤二核苷酸辅酶。然而,在过去几年中,几项独立研究表明NAD(H)在光照下的叶片质体中发挥着未被充分认识的作用。这在一定程度上解释了基质中存在不依赖光的NAD特异性苹果酸脱氢酶。我们回顾了苹果酸阀的历史,并讨论了基质NAD(H)在不利生长条件下对植物生存的潜在作用,以及利用基质NAD(H)库减轻PSI损伤的可能性。