Auld D S, Young G B, Saunders A J, Doyle D F, Betz S F, Pielak G J
Department of Chemistry, University of North Carolina at Chapel Hill 27599-3290.
Protein Sci. 1993 Dec;2(12):2187-97. doi: 10.1002/pro.5560021218.
Theoretical, statistical, and model studies suggest that proteins are stabilized by weakly polar attractions between sulfur atoms and properly oriented aromatic rings. The two sulfur-containing amino acids, methionine and cysteine, occur frequently among functional alleles in random mutant libraries of Saccharomyces cerevisiae iso-1-cytochrome c genes at positions that form a weakly polar aromatic-aromatic interaction, the wild-type protein. To determine if a weakly polar sulfur-aromatic interaction replaced the aromatic-aromatic interaction, the structure and stability of two variants were examined. Phenylalanine 10, which interacts with tyrosine 97, was replaced by methionine and cysteine. The cysteine was modified to form the methionine and cysteine analog, S-methyl cysteine (CysSMe). Proton NMR studies indicate that changing Phe 10 to Met or CysSMe affects only local structure and that the structures of sulfur-containing variants are nearly identical. Analysis of chemical shifts and nuclear Overhauser effect data indicates that both sulfur-containing side chains are in position to form a weakly polar interaction with Tyr 97. The F10M and F10CSMe variants are 2-3 kcal mol-1 less stable than iso-1-cytochrome c at 300 K. Comparison of the stabilities of the F10M and F10CSMe variants allows evaluation of the potential weakly polar interaction between the additional sulfur atom of F10CSMe and the aromatic moiety of Tyr 97. The F10CSMe;C102T variant is 0.7 +/- 0.3 kcal mol-1 more stable than the F10M;C102T protein. The increased stability is explained by the difference in hydrophobicity of the sulfur-containing side chains. We conclude that any weakly polar interaction between the additional sulfur and the aromatic ring is too weak to detect or is masked by destabilizing contributions to the free energy of denaturation.
理论、统计和模型研究表明,蛋白质通过硫原子与取向合适的芳香环之间的弱极性吸引力得以稳定。在酿酒酵母异-1-细胞色素c基因的随机突变文库中,两种含硫氨基酸,即甲硫氨酸和半胱氨酸,经常出现在功能等位基因中,处于形成弱极性芳香-芳香相互作用(野生型蛋白质)的位置。为了确定弱极性硫-芳香相互作用是否取代了芳香-芳香相互作用,研究了两个变体的结构和稳定性。与酪氨酸97相互作用的苯丙氨酸10被甲硫氨酸和半胱氨酸取代。半胱氨酸经修饰形成甲硫氨酸和半胱氨酸类似物S-甲基半胱氨酸(CysSMe)。质子核磁共振研究表明,将苯丙氨酸10替换为甲硫氨酸或CysSMe仅影响局部结构,且含硫变体的结构几乎相同。化学位移和核Overhauser效应数据分析表明,两个含硫侧链均处于与酪氨酸97形成弱极性相互作用的位置。在300 K时,F10M和F10CSMe变体比异-1-细胞色素c的稳定性低2 - 3千卡/摩尔。比较F10M和F10CSMe变体稳定性,可评估F10CSMe额外硫原子与酪氨酸97芳香部分之间潜在弱极性相互作用。F10CSMe;C102T变体比F10M;C102T蛋白稳定性高0.7±0.3千卡/摩尔。稳定性增加可通过含硫侧链疏水性差异来解释。我们得出结论,额外硫与芳香环之间的任何弱极性相互作用都太弱而无法检测到,或者被变性自由能的不稳定贡献所掩盖。