Heinecke J W, Kawamura M, Suzuki L, Chait A
Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.
J Lipid Res. 1993 Dec;34(12):2051-61.
Oxidatively damaged low density lipoprotein (LDL) may cause macrophages to accumulate cholesterol in an unregulated manner, initiating the development of atherosclerotic lesions. Cultured smooth muscle cells oxidize LDL by a superoxide (O2.-)-dependent mechanism that requires L-cystine and redox-active transition metal ions in the incubation medium. To test the hypothesis that cellular reduction of L-cystine to a thiol might be involved, we exposed LDL to L-cysteine, glutathione, and D,L-homocysteine. In a cell-free system each thiol modified LDL by a pathway that required either Cu2+ or Fe3+. Thiol- and Cu(2+)-modified LDL underwent lipid peroxidation and exhibited a number of properties of cell-modified LDL, including increased mobility on agarose gel electrophoresis and fragmentation of apolipoprotein B-100. Superoxide dismutase inhibited modification of LDL by L-cysteine/Cu2+, whereas catalase and mannitol were without effect. In striking contrast, superoxide dismutase had little effect on oxidation of LDL by Cu2+ and either homocysteine or glutathione. Moreover, only L-cysteine/Cu(2+)-modified 125I-labeled LDL was degraded more rapidly than 125I-labeled LDL by human monocyte-derived macrophages: superoxide dismutase in the reaction mixture blocked the facilitated uptake of L-cysteine/Cu(2+)-modified 125I-labeled LDL, suggesting involvement of O2.-. These results indicate that LDL oxidation by L-cysteine and Cu2+ requires O2.- but not H2O2 or hydroxyl radical. The reaction may involve the metal ion-dependent formation of L-cystine radical anion which is oxidized by oxygen, yielding O2.- and the disulfide. LDL modified by L-cysteine and smooth muscle cells exhibit similar physical and biological properties, indicating that thiol-dependent generation of O2.- may be the oxidative mechanism in both systems. Thiols also promote lipid peroxidation by O2(.-)-independent reactions but human macrophages fail to rapidly degrade these oxidized LDLs.
氧化损伤的低密度脂蛋白(LDL)可能会导致巨噬细胞以不受调控的方式积累胆固醇,从而引发动脉粥样硬化病变的发展。培养的平滑肌细胞通过一种依赖超氧化物(O2.-)的机制氧化LDL,该机制需要孵育培养基中的L-胱氨酸和具有氧化还原活性的过渡金属离子。为了验证细胞将L-胱氨酸还原为硫醇可能参与其中这一假说,我们将LDL暴露于L-半胱氨酸、谷胱甘肽和D,L-高半胱氨酸中。在无细胞体系中,每种硫醇都通过一种需要Cu2+或Fe3+的途径修饰LDL。硫醇和Cu(2+)修饰的LDL发生脂质过氧化,并表现出一些细胞修饰LDL的特性,包括在琼脂糖凝胶电泳上迁移率增加以及载脂蛋白B-100的片段化。超氧化物歧化酶抑制L-半胱氨酸/Cu2+对LDL的修饰,而过氧化氢酶和甘露醇则无此作用。与之形成鲜明对比的是,超氧化物歧化酶对Cu2+与高半胱氨酸或谷胱甘肽氧化LDL的作用很小。此外,只有L-半胱氨酸/Cu(2+)修饰的125I标记的LDL比人单核细胞衍生的巨噬细胞对125I标记的LDL降解得更快:反应混合物中的超氧化物歧化酶阻止了L-半胱氨酸/Cu(2+)修饰的125I标记的LDL的易化摄取,提示O2.-参与其中。这些结果表明,L-半胱氨酸和Cu2+氧化LDL需要O2.-,但不需要H2O2或羟基自由基。该反应可能涉及金属离子依赖性形成的L-胱氨酸自由基阴离子,其被氧气氧化,产生O2.-和二硫化物。L-半胱氨酸修饰的LDL和平滑肌细胞表现出相似的物理和生物学特性,表明硫醇依赖性产生O2.-可能是两个体系中的氧化机制。硫醇还通过不依赖O2(.-)的反应促进脂质过氧化,但人类巨噬细胞不能快速降解这些氧化的LDL。