Suppr超能文献

从化脓性链球菌菌株FF22中分离出的羊毛硫抗生素SA-FF22的作用模式。

The mode of action of SA-FF22, a lantibiotic isolated from Streptococcus pyogenes strain FF22.

作者信息

Jack R, Benz R, Tagg J, Sahl H G

机构信息

Institut für Medizinische Mikrobiologie und Immunologie, Universität Bonn.

出版信息

Eur J Biochem. 1994 Jan 15;219(1-2):699-705. doi: 10.1111/j.1432-1033.1994.tb19986.x.

Abstract

SA-FF22 is a lanthionine-containing bacteriocidal peptide isolated from Streptococcus pyogenes strain FF22. The peptide interacts closely with non-energised artificial phospholipid vesicles, as evidenced by a 'blue shift' in the fluorescent emissions associated with a tryptophan residue within the peptide sequence. Furthermore, SA-FF22 induced efflux of radiolabelled amino acids from artificially energised cytoplasmic membrane vesicles and arrested uptake of amino acids by intact cells. By measuring the decrease in membrane potential of both starved and energised SA-FF22-treated cells, and through the use of artificial planar membranes, a potential of approximately 100 mV was deduced as the minimum required to induce pore formation by SA-FF22. This threshold potential is independent of the orientation of the applied voltage (i.e. trans or cis orientations are equally effective). Single channel conductance measurements suggested that the pores formed by SA-FF22 are relatively unstable, short-lived and approximately 0.5-0.6 nm in diameter. This is somewhat smaller than those of the previously described, pore-forming lantibiotics and should not allow significant efflux of large molecules such as ATP. Thus, death of affected cells seems to result from membrane-potential disruption and subsequent exhaustion of the cells.

摘要

SA-FF22是一种从化脓性链球菌FF22菌株中分离出的含羊毛硫氨酸的杀菌肽。该肽与未激活的人工磷脂囊泡紧密相互作用,这可由肽序列中与色氨酸残基相关的荧光发射“蓝移”证明。此外,SA-FF22诱导放射性标记氨基酸从人工激活的细胞质膜囊泡中流出,并阻止完整细胞摄取氨基酸。通过测量饥饿和激活的经SA-FF22处理的细胞的膜电位降低,并使用人工平面膜,推断出约100 mV的电位是SA-FF22诱导形成孔所需的最低电位。该阈值电位与施加电压的方向无关(即反式或顺式方向同样有效)。单通道电导测量表明,SA-FF22形成的孔相对不稳定、寿命短,直径约为0.5 - 0.6 nm。这比先前描述的形成孔的羊毛硫抗生素的孔稍小,并且不应允许诸如ATP等大分子大量流出。因此,受影响细胞死亡似乎是由于膜电位破坏以及随后细胞耗尽所致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验