Ringquist S, Schneider D, Gibson T, Baron C, Böck A, Gold L
Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309.
Genes Dev. 1994 Feb 1;8(3):376-85. doi: 10.1101/gad.8.3.376.
In Escherichia coli the unusual amino acid selenocysteine is incorporated cotranslationally at an in-frame UGA codon. Incorporation of selenocysteine relies, in part, on the interaction between a specialized elongation factor, the SELB protein, and a cis-acting element within the mRNA. Boundary and toeprint experiments illustrate that the SELB-GTP-Sec-tRNA(Sec) ternary complex binds to the selenoprotein encoding mRNAs fdhF and fdnG, serving to increase the concentration of SELB and Sec-tRNA(Sec) on these mRNAs in vivo. Moreover, toeprint experiments indicate that SELB recognizes the ribosome-bound message and that, upon binding, SELB may protrude out of the ribosomal-mRNA track so as to approach the large ribosomal subunit. The results place the mRNA-bound SELB-GTP-Sec-tRNA(Sec) ternary complex at the selenocysteine codon (as expected) and suggest a mechanism to explain the specificity of selenocysteine insertion. Cis-acting mRNA regulatory elements can tether protein factors to the translation complex during protein synthesis.
在大肠杆菌中,异常氨基酸硒代半胱氨酸在符合读框的UGA密码子处共翻译掺入。硒代半胱氨酸的掺入部分依赖于一种特殊延伸因子SELB蛋白与mRNA内顺式作用元件之间的相互作用。边界和足迹实验表明,SELB-GTP-Sec-tRNA(Sec)三元复合物与编码硒蛋白的mRNA fdhF和fdnG结合,有助于在体内增加这些mRNA上SELB和Sec-tRNA(Sec)的浓度。此外,足迹实验表明SELB识别核糖体结合的信使RNA,并且在结合后,SELB可能会从核糖体-mRNA轨道中突出,从而接近大核糖体亚基。结果将结合mRNA的SELB-GTP-Sec-tRNA(Sec)三元复合物定位在硒代半胱氨酸密码子处(如预期),并提出了一种机制来解释硒代半胱氨酸插入的特异性。顺式作用mRNA调控元件可以在蛋白质合成过程中将蛋白质因子束缚到翻译复合物上。