Suppr超能文献

计算单根肌纤维动作电位时的生物电源。

The bioelectrical source in computing single muscle fiber action potentials.

作者信息

van Veen B K, Wolters H, Wallinga W, Rutten W L, Boom H B

机构信息

University of Twente, Department of Electrical Engineering, Enschede, The Netherlands.

出版信息

Biophys J. 1993 May;64(5):1492-8. doi: 10.1016/S0006-3495(93)81516-9.

Abstract

Generally, single muscle fiber action potentials (SFAPs) are modeled as a convolution of the bioelectrical source (being the transmembrane current) with a weighting or transfer function, representing the electrical volume conduction. In practice, the intracellular action potential (IAP) rather than the transmembrane current is often used as the source, because the IAP is relatively easy to obtain under experimental conditions. Using a core conductor assumption, the transmembrane current equals the second derivative of the IAP. In previous articles, discrepancies were found between experimental and simulated SFAPs. Adaptations in the volume conductor slightly altered the simulation results. Another origin of discrepancy might be an erroneous description of the source. Therefore, in the present article, different sources were studied. First, an analytical description of the IAP was used. Furthermore, an experimental IAP, a special experimental SFAP, and a measured transmembrane current scaled to our experimental situation were applied. The results for the experimental IAP were comparable to those with the analytical IAP. The best agreement between experimental and simulated data was found for a measured transmembrane current as source, but differences are still apparent.

摘要

一般来说,单肌纤维动作电位(SFAPs)被建模为生物电源(即跨膜电流)与一个表示电容积传导的加权或传递函数的卷积。在实际中,细胞内动作电位(IAP)而非跨膜电流常被用作源,因为在实验条件下IAP相对容易获得。基于核心导体假设,跨膜电流等于IAP的二阶导数。在之前的文章中,实验性和模拟性的SFAPs之间发现了差异。容积导体中的适应性变化略微改变了模拟结果。差异的另一个来源可能是源的错误描述。因此,在本文中,研究了不同的源。首先,使用了IAP的解析描述。此外,还应用了实验性IAP、一种特殊的实验性SFAP以及按我们的实验情况缩放的实测跨膜电流。实验性IAP的结果与解析性IAP的结果相当。以实测跨膜电流作为源时,实验数据与模拟数据之间的一致性最佳,但差异仍然明显。

相似文献

引用本文的文献

8
Surface electromyogram signal modelling.表面肌电图信号建模。
Med Biol Eng Comput. 2004 Jul;42(4):446-54. doi: 10.1007/BF02350985.
9
Influence of inhomogeneities in muscle tissue on single-fibre action potentials: a model study.
Med Biol Eng Comput. 1997 Mar;35(2):91-5. doi: 10.1007/BF02534136.

本文引用的文献

2
Simulation of single muscle fibre action potentials.
Med Biol Eng Comput. 1983 Mar;21(2):158-65. doi: 10.1007/BF02441531.
3
Anisotropy in the dielectric properties of skeletal muscle.骨骼肌介电特性的各向异性。
Med Biol Eng Comput. 1983 Jan;21(1):51-5. doi: 10.1007/BF02446406.
4
Comparative analysis of modelled extracellular potentials.模拟细胞外电位的比较分析。
Med Biol Eng Comput. 1984 Sep;22(5):440-7. doi: 10.1007/BF02447704.
5
Mathematical model of the single-fibre action potential.单纤维动作电位的数学模型。
Med Biol Eng Comput. 1984 Sep;22(5):433-9. doi: 10.1007/BF02447703.
6
Impedance of skeletal muscle from 1 Hz to 1 MHz.从1赫兹到1兆赫兹的骨骼肌阻抗。
IEEE Trans Biomed Eng. 1984 Jun;31(6):477-81. doi: 10.1109/TBME.1984.325417.
8
Calculation and registration of the same motor unit action potential.
Electroencephalogr Clin Neurophysiol. 1982 Apr;53(4):388-404. doi: 10.1016/0013-4694(82)90004-9.
9
A mathematical evaluation of the core conductor model.芯导体模型的数学评估。
Biophys J. 1966 Jan;6(1):95-112. doi: 10.1016/S0006-3495(66)86642-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验