Suppr超能文献

女性重度抑郁症的预测:迈向综合病因模型

The prediction of major depression in women: toward an integrated etiologic model.

作者信息

Kendler K S, Kessler R C, Neale M C, Heath A C, Eaves L J

机构信息

Department of Psychiatry, Medical College of Virginia/Virginia Commonwealth University, Richmond.

出版信息

Am J Psychiatry. 1993 Aug;150(8):1139-48. doi: 10.1176/ajp.150.8.1139.

Abstract

OBJECTIVE

The authors develop an exploratory, integrated etiologic model for the prediction of episodes of major depression in an epidemiologic sample of women.

METHOD

Both members of 680 female-female twin pairs of known zygosity from a population-based register were assessed three times at greater than 1-year intervals. The last two assessments included a structured interview evaluation for presence of episodes of major depression, defined by DSM-III-R, in the preceding year. The final structural equation model contained nine predictor variables: genetic factors, parental warmth, childhood parental loss, lifetime traumas, neuroticism, social support, past depressive episodes, recent difficulties, and recent stressful life events.

RESULTS

The best-fitting model predicted 50.1% of the variance in the liability to major depression. The strongest predictors of this liability were, in descending order, 1) stressful life events, 2) genetic factors, 3) previous history of major depression, and 4) neuroticism. While 60% of the effect of genetic factors on the liability to major depression was direct, the remaining 40% was indirect and mediated largely by a history of prior depressive episodes, stressful life events, lifetime traumas, and neuroticism. The model suggested that at least four major and interacting risk factor domains are needed to understand the etiology of major depression: traumatic experiences, genetic factors, temperament, and interpersonal relations.

CONCLUSIONS

Major depression is a multifactorial disorder, and understanding its etiology will require the rigorous integration of genetic, temperamental, and environmental risk factors.

摘要

目的

作者建立了一个探索性的综合病因模型,用于预测女性流行病学样本中的重度抑郁发作。

方法

从一个基于人群的登记处选取680对已知合子性的女性双胞胎,对其进行了三次评估,间隔时间超过1年。最后两次评估包括对前一年是否存在由《精神疾病诊断与统计手册》第三版修订版(DSM-III-R)定义的重度抑郁发作进行结构化访谈评估。最终的结构方程模型包含九个预测变量:遗传因素、父母温暖度、童年时期父母离世、终生创伤、神经质、社会支持、过去的抑郁发作、近期困难以及近期应激性生活事件。

结果

拟合度最佳的模型预测了重度抑郁易感性中50.1%的方差。该易感性的最强预测因素按降序排列为:1)应激性生活事件,2)遗传因素,3)重度抑郁的既往史,4)神经质。虽然遗传因素对重度抑郁易感性的影响有60%是直接的,但其余40%是间接的,主要由既往抑郁发作史、应激性生活事件、终生创伤和神经质介导。该模型表明,至少需要四个主要且相互作用的风险因素领域来理解重度抑郁的病因:创伤经历、遗传因素、气质和人际关系。

结论

重度抑郁是一种多因素疾病,理解其病因需要对遗传、气质和环境风险因素进行严格整合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验