Suppr超能文献

3-D analysis of F-actin in stereocilia of cochlear hair cells after loud noise exposure.

作者信息

Avinash G B, Nuttall A L, Raphael Y

机构信息

Kresge Hearing Research Institute, Ann Arbor, MI 48109-0506.

出版信息

Hear Res. 1993 May;67(1-2):139-46. doi: 10.1016/0378-5955(93)90241-r.

Abstract

Fluorescence microscopy can be a useful tool in the early detection of pathological changes in the stereocilia of outer hair cells which have undergone acoustic overstimulation. Fluorescent phalloidin, a highly specific F-actin stain, can be used to label F-actin in stereocilia. In this study, phalloidin label is used to determine quantitative changes of F-actin in the stereocilia of guinea pigs exposed to loud noise (117 dB; octave band noise, centered at 1 kHz; 4 h). Reliably determining three-dimensional (3-D) structural changes in stereocilia is a challenging problem in optical microscopy since stereocilia diameter is close to the optical resolution limit. In order to alleviate the problem, a computational 3-D microscopy technique is used (Avinash et al., 1992). Whole-mounts of the cochlear second and third turns were examined in a Leitz Orthoplan microscope through a Leitz Plan Apo objective lens (100 x; 1.32 N.A.; 170/0.17). Images were acquired with a charge-coupled device camera where the focus was shifted in 0.2 microns steps using a piezoelectric translator. Images were processed with the appropriate point spread function of the optical system. Analysis of control cochleas indicate that our technique can resolve single stereocilia and distinguish between various intensities of label along each stereocilia. In noise-exposed cochleas, our data show length and intensity changes in the phalloidin label. These results suggest that both depolymerization and polymerization of F-actin can occur in stereocilia of outer hair cells after acoustic overstimulation. Our findings demonstrate the applicability of computational 3-D microscopy to quantitative and qualitative analysis of stereocilia.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验