Lamb D J, Niederberger C S
Scott Department of Urology, Baylor College of Medicine, Houston, Texas 77030.
World J Urol. 1993;11(2):129-36. doi: 10.1007/BF00182040.
fertility data is inadequately assessed by traditional statistical methods for a variety of reasons. First, the principal test of male fertility potential, the Semen Analysis (SA) is a composite of several dissimilar parameters, and the SA and other laboratory tests of fertility potential reflect physiological mechanisms that interact in complex ways. Second, patient data is often fragmented, obtained from multiple sources. Importantly, 2 patients are required for the final result.
Novel and powerful computational method, the neural network, was explored to analyze fertility data. An integrated series of programs was written in the C computer language to implement a back propagation algorithm. A model data analysis system was chosen, predicting the penetration of zona-free hamster ova by sperm (Sperm Penetration Assay (SPA)) and the distance travelled by the farthest swimming sperm (Penetrak Assay) from the SA, for these 2 assays are generally believed by the reproductive medical community to be independent of the SA. The classification accuracy of the neural network was compared to 2 standard statistical methods, linear discriminant function analysis (LDFA) and quadratic discriminant function analysis (QDFA).
A neural network could be trained to correctly predict the Penetrak result in over 80% of assays it had not previously encountered, and another network could predict the SPA outcome in nearly 70%. The neural network was superior to LDFA and QDFA in predicting both assay outcomes (for Penetrak: LDFA = 64%, QDFA = 69%; for SPA: LDFA = 65%, QDFA = 45%).(ABSTRACT TRUNCATED AT 250 WORDS)
由于多种原因,传统统计方法对生育力数据的评估并不充分。首先,男性生育力潜能的主要检测方法,即精液分析(SA),是由几个不同参数组成的综合指标,而且SA以及其他生育力潜能实验室检测反映了以复杂方式相互作用的生理机制。其次,患者数据通常是零散的,来自多个来源。重要的是,最终结果需要两名患者的数据。
探索了一种新颖且强大的计算方法——神经网络,用于分析生育力数据。用C计算机语言编写了一系列集成程序,以实现反向传播算法。选择了一个模型数据分析系统,预测来自精液分析的无透明带仓鼠卵的精子穿透率(精子穿透试验(SPA))以及最远游动精子的游动距离(Penetrak试验),因为生殖医学界普遍认为这两种试验独立于精液分析。将神经网络的分类准确率与两种标准统计方法进行比较,即线性判别函数分析(LDFA)和二次判别函数分析(QDFA)。
可以训练一个神经网络,在超过80%的它之前未遇到过的试验中正确预测Penetrak结果,另一个神经网络可以在近70%的试验中预测SPA结果。在预测两种试验结果方面,神经网络优于LDFA和QDFA(对于Penetrak:LDFA = 64%,QDFA = 69%;对于SPA:LDFA = 65%,QDFA = 45%)。(摘要截断于250字)