Keller F, Erdmann K, Giehl M, Buettner P
Department of General Internal Medicine and Nephrology, Steglitz Hospital, Free University of Berlin, Federal Republic of Germany.
Clin Pharmacokinet. 1993 Jul;25(1):71-9. doi: 10.2165/00003088-199325010-00005.
The distribution and elimination of various drugs depend on kidney function. This dependence is published either as a linear regression equation or as the discrete extreme values for normal kidney function and anuria. A meta-analysis of the published pharmacokinetic data is required to build up a knowledge-based computer system for dosage adjustment in renal failure. A sample comparison of 4 statistical methods for meta-analysis was performed by applying them to 13 publications about the aminoglycoside netilmicin. Parametric meta-analytical methods I and II are based on regression equations alone (Z-transformation, maximum likelihood) and yield unreliable data, especially with regard to extreme values for anuria. The parametric meta-analytical method III is based on means of extreme values (standard 2-stage approach) and does not permit a decision as to whether linear interpolation of a parameter (e.g. volume of distribution) can be used for all degrees of renal insufficiency. In contrast, the nonparametric median (meta-analytical method IV) is based on the extreme values calculated from regression equations and empirical extreme values combined into 1 group of data on normal kidney function and another on anuria. For netilmicin, the meta-analytical median with the 95% confidence interval (95% CI) yields a significant increase in the dominant elimination half-life from 2h (95% CI 1.9h, 2.6h) in patients with normal kidney function to 45h (95% CI 41h, 301h) in those with anuria (p = 0.001). For a normal bodyweight of 65kg, the volume of distribution also increases significantly from 13L (95% CI 9L, 15L) to 20L (95% CI 14L, 21L) in patients with anuria (p = 0.04). Thus, drug dosage adjustment according to therapeutic peak and trough concentrations requires knowledge of the distribution and elimination parameters, since they can both be independently altered in renal failure. We conclude that the most robust meta-analysis of these alterations is achieved with the nonparametric median of extreme values.
各种药物的分布和消除取决于肾功能。这种依赖性要么以线性回归方程的形式公布,要么以正常肾功能和无尿的离散极值形式公布。需要对已发表的药代动力学数据进行荟萃分析,以建立一个基于知识的肾衰竭剂量调整计算机系统。通过将4种荟萃分析统计方法应用于13篇关于氨基糖苷类奈替米星的出版物,进行了样本比较。参数化荟萃分析方法I和II仅基于回归方程(Z变换、最大似然法),得出的数据不可靠,尤其是在无尿极值方面。参数化荟萃分析方法III基于极值均值(标准两阶段法),无法确定是否可以对所有肾功能不全程度使用参数(如分布容积)的线性插值。相比之下,非参数中位数(荟萃分析方法IV)基于从回归方程计算出的极值和经验极值,将其合并为一组关于正常肾功能的数据和另一组关于无尿的数据。对于奈替米星,具有95%置信区间(95%CI)的荟萃分析中位数显示,主要消除半衰期从肾功能正常患者的2小时(95%CI 1.9小时,2.6小时)显著增加到无尿患者的45小时(95%CI 41小时,301小时)(p = 0.001)。对于体重65kg的正常人,无尿患者的分布容积也从13L(95%CI 9L,15L)显著增加到20L(95%CI 14L,21L)(p = 0.04)。因此,根据治疗峰浓度和谷浓度调整药物剂量需要了解分布和消除参数,因为它们在肾衰竭中都可能独立改变。我们得出结论,对这些变化进行最可靠的荟萃分析是通过非参数化的极值中位数来实现的。