Koester C J, Ting A C, Holladay J T, Willis T R
Allergan Medical Optics, Santa Ana, California 92799.
J Cataract Refract Surg. 1993 Jul;19(4):499-504. doi: 10.1016/s0886-3350(13)80614-1.
Computer analysis is used to predict performance of four intraocular lenses with assigned values of aberration. Cylinder error and asphericity error are used as examples of possible manufacturing errors. Three measures of performance are calculated: maximum optical path difference, root mean square optical path difference, and modulation transfer function. For evaluation in air these standard test conditions are assumed: collimated green light incident on the convex surface of a plano-convex lens, with a 3 mm aperture. All four lenses show substantially improved performance in water compared to air, and a further improvement in the simulated eye (i.e., in situ). However, an aberrated 30 diopter (D) lens with performance in air comparable to an aberrated 20 D lens, performs worse in situ than does the 20 D lens. This suggests that a performance test in air that is suitable for a 20 D lens (e.g., 100 line pairs per millimeter resolution) may not be adequate for a 30 D lens. A test in air at 30% resolution efficiency may be more suitable.
计算机分析用于预测具有指定像差值的四种人工晶状体的性能。柱面误差和非球面误差用作可能的制造误差示例。计算了三种性能指标:最大光程差、均方根光程差和调制传递函数。为了在空气中进行评估,假设采用这些标准测试条件:准直绿光入射到平凸透镜的凸面上,孔径为3毫米。与在空气中相比,所有四种晶状体在水中的性能都有显著提高,并且在模拟眼(即原位)中性能进一步提高。然而,一个在空气中性能与20 D的像差晶状体相当的30屈光度(D)像差晶状体,在原位的表现比20 D晶状体更差。这表明适用于20 D晶状体的空气中性能测试(例如,每毫米100线对分辨率)可能不适用于30 D晶状体。以30%分辨率效率在空气中进行测试可能更合适。