Suppr超能文献

Shift reagent enhanced concurrent 23Na and 1H magnetic resonance spectroscopic studies of transcellular sodium distribution in the dog brain in vivo.

作者信息

Eleff S M, Mclennan I J, Hart G K, Maruki Y, Traystman R J, Koehler R C

机构信息

Johns Hopkins University, Department of Anesthesiology/Critical Care Medicine, Baltimore, MD 21287-7834.

出版信息

Magn Reson Med. 1993 Jul;30(1):11-7. doi: 10.1002/mrm.1910300104.

Abstract

The intracellular to extracellular sodium distribution is one of the primary determinants of action potentials necessary for the electrical function of organs such as brain, heart and skeletal muscle. The ability of shift reagent enhanced 23Na MRS to directly measure the intracellular and extracellular sodium distribution in brain is controversial and centers on the relative contributions of bulk magnetic susceptibility and hyperfine interactions to the observed chemical shifts. In this study, infusion of dysprosium (III) triethylenetetraminehexacetate (Dy(TTHA)-3), resulted in a 23Na MRS spectrum of dog brain with two well resolved peaks at 9 and 0.4 ppm. The 9 ppm peak corresponded to the resonance seen in aspirated blood. After disruption of the blood brain barrier, the single peak at 0.4 ppm split into two peaks at 3 and 0 ppm. The ability of Dy(TTHA)-3 enhanced 23Na MRS to follow global changes in brain sodium distribution was tested during cardiac arrest. The expected rapid Na influx into the intracellular space produced a marked decrease in the 3 ppm signal and a parallel increase in the 0 ppm peak. This is consistent with the assignment of the 3 ppm peak as interstitial sodium and the 0 ppm peak as intracellular sodium.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验