Hua P, Woo E J, Webster J G, Tompkins W J
Applied Research Group, Siemens Gammasonics Inc., Hoffman Estates, IL 60195.
IEEE Trans Biomed Eng. 1993 Apr;40(4):335-43. doi: 10.1109/10.222326.
In electrical impedance tomography (EIT), we inject currents through and measure voltages from an array of surface electrodes. The measured voltages are sensitive to electrode-skin contact impedance because the contact impedance and the current density through this contact impedance are both high. We used large electrodes to provide a more uniform current distribution and reduce the contact impedance. A large electrode differs from a point electrode in that it has shunting and edge effects which cannot be modeled by a single resistor. We used the finite element method (FEM) to study the electric field distributions underneath an electrode, and developed three models: a FEM model, a simplified FEM model and a weighted load model. We showed that the FEM models considered both shunting and edge effects and matched closely the experimental measurements. FEM models for electrodes can be used to improve the performance of an electrical impedance tomography reconstruction algorithm.
在电阻抗断层成像(EIT)中,我们通过一组表面电极注入电流并测量电压。所测量的电压对电极与皮肤之间的接触阻抗很敏感,因为接触阻抗以及通过该接触阻抗的电流密度都很高。我们使用大电极来提供更均匀的电流分布并降低接触阻抗。大电极与点电极的不同之处在于它具有分流和边缘效应,而这些效应无法用单个电阻来建模。我们使用有限元方法(FEM)来研究电极下方的电场分布,并开发了三种模型:有限元模型、简化有限元模型和加权负载模型。我们表明,有限元模型既考虑了分流效应又考虑了边缘效应,并且与实验测量结果紧密匹配。电极的有限元模型可用于提高电阻抗断层成像重建算法的性能。