Ali N, Craxton A, Shears S B
Laboratory of Cellular and Molecular Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709.
J Biol Chem. 1993 Mar 25;268(9):6161-7.
In pursuit of the physiological role of inositol 1,3,4,5-tetrakisphosphate 3-phosphatase, which also attacks inositol pentakisphosphate and inositol hexakisphosphate with much higher affinity (Nogimori, K., Hughes, P.J., Glennon, M.C., Hodgson, M.E., Putney, J.W., Jr., and Shears, S.B. (1991) J. Biol. Chem. 266, 16499-16506), we have studied the subcellular distribution of the enzyme in liver. Initially, we had to overcome the problem that potent endogenous inhibitor(s) compromise the detection of this enzyme in vitro (Hodgson, M.E., and Shears, S.B. (1990) Biochem. J. 267, 831-834). We partially purified these inhibitor(s) by anion-exchange chromatography and gel filtration; inhibitory activity co-eluted with standard inositol hexakisphosphate and was depleted by treatment with phytase. Thus, subcellular fractions were pretreated with phytase before assay of 3-phosphatase activity. Our experiments revealed that the hepatic 3-phosphatase was nearly exclusively restricted to the endoplasmic reticulum, and there was little or no activity in either the cytosol, plasma membranes, mitochondria, or nuclei. Detergent treatment of microsomes indicated that there was 93 +/- 2% latency to mannose-6-phosphatase, an intraorganelle enzyme activity (Vanstapel, F., Pua, K., and Blanckaert, N. (1986) Eur. J. Biochem. 156, 73-77). Similar latencies were found for the hydrolysis of inositol 1,3,4,5-tetrakisphosphate (95 +/- 1%), inositol 1,3,4,5,6-pentakisphosphate (94 +/- 1%), and inositol hexakisphosphate (93 +/- 2%). Treatment of microsomes with either sodium carbonate or phosphatidylcholine-specific phospholipase C, to release luminal contents, led to solubilization of approximately 90% of 3-phosphatase activity. Thus, hepatic 3-phosphatase has a highly restricted access to inositol polyphosphates in vivo that needs to be accounted for in the determination of the physiological role of this enzyme.
为了探究肌醇1,3,4,5 - 四磷酸3 - 磷酸酶的生理作用,该酶对肌醇五磷酸和肌醇六磷酸也具有更高的亲和力(野守纪、休斯、格伦农、霍奇森、帕特尼、小J.W.和希尔斯,(1991年)《生物化学杂志》266卷,16499 - 16506页),我们研究了该酶在肝脏中的亚细胞分布。最初,我们必须克服一个问题,即强效内源性抑制剂会影响该酶在体外的检测(霍奇森和希尔斯,(1990年)《生物化学杂志》267卷,831 - 834页)。我们通过阴离子交换色谱法和凝胶过滤对这些抑制剂进行了部分纯化;抑制活性与标准肌醇六磷酸共洗脱,并通过用植酸酶处理而消除。因此,在测定3 - 磷酸酶活性之前,先用植酸酶对亚细胞组分进行预处理。我们的实验表明,肝脏中的3 - 磷酸酶几乎完全局限于内质网,在细胞质、质膜、线粒体或细胞核中几乎没有或没有活性。用去污剂处理微粒体表明,对甘露糖 - 6 - 磷酸酶(一种细胞器内酶活性)(万斯塔佩尔、普阿、布兰卡特,(1986年)《欧洲生物化学杂志》156卷,73 - 77页)有93±2%的潜伏性。对于肌醇1,3,4,5 - 四磷酸(95±1%)、肌醇1,3,4,5,6 - 五磷酸(94±1%)和肌醇六磷酸(93±2%)的水解也发现了类似的潜伏性。用碳酸钠或磷脂酰胆碱特异性磷脂酶C处理微粒体以释放腔内物质,导致约90%的3 - 磷酸酶活性溶解。因此,肝脏中的3 - 磷酸酶在体内对肌醇多磷酸的接触非常有限,在确定该酶的生理作用时需要考虑到这一点。