Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.
Institute of Neurogenomics, Helmholtz Zentrum Munich, Neuherberg, Germany, Technical University of Munich, Munich, Germany.
Eur J Hum Genet. 2021 Mar;29(3):411-421. doi: 10.1038/s41431-020-00749-x. Epub 2020 Nov 9.
Pontocerebellar hypoplasia (PCH) describes a group of rare heterogeneous neurodegenerative diseases with prenatal onset. Here we describe eight children with PCH from four unrelated families harboring the homozygous MINPP1 (NM_004897.4) variants; c.75_94del, p.(Leu27Argfs39), c.851 C > A, p.(Ala284Asp), c.1210 C > T, p.(Arg404), and c.992 T > G, p.(Ile331Ser). The homozygous p.(Leu27Argfs39) change is predicted to result in a complete absence of MINPP1. The p.(Arg404) would likely lead to a nonsense mediated decay, or alternatively, a loss of several secondary structure elements impairing protein folding. The missense p.(Ala284Asp) affects a buried, hydrophobic residue within the globular domain. The introduction of aspartic acid is energetically highly unfavorable and therefore predicted to cause a significant reduction in protein stability. The missense p.(Ile331Ser) affects the tight hydrophobic interactions of the isoleucine by the disruption of the polar side chain of serine, destabilizing the structure of MINPP1. The overlap of the above-mentioned genotypes and phenotypes is highly improbable by chance. MINPP1 is the only enzyme that hydrolyses inositol phosphates in the endoplasmic reticulum lumen and several studies support its role in stress induced apoptosis. The pathomechanism explaining the disease mechanism remains unknown, however several others genes of the inositol phosphatase metabolism (e.g., INPP5K, FIG4, INPP5E, ITPR1) are correlated with phenotypes of neurodevelopmental disorders. Taken together, we present MINPP1 as a novel autosomal recessive pontocerebellar hypoplasia gene.
桥脑小脑发育不良(PCH)描述了一组罕见的具有产前发病的异质性神经退行性疾病。在这里,我们描述了四个不相关的家庭中 8 名患有 PCH 的儿童,他们均携带 MINPP1(NM_004897.4)纯合变异;c.75_94del,p.(Leu27Argfs39),c.851 C > A,p.(Ala284Asp),c.1210 C > T,p.(Arg404),和 c.992 T > G,p.(Ile331Ser)。纯合 p.(Leu27Argfs39)改变预计会导致 MINPP1 完全缺失。p.(Arg404)可能导致无义介导的衰变,或者替代地,丧失几个二级结构元件会损害蛋白质折叠。错义 p.(Ala284Asp)影响球状结构域内的一个埋藏的疏水性残基。引入天冬氨酸在能量上是非常不利的,因此预计会导致蛋白质稳定性的显著降低。错义 p.(Ile331Ser)通过破坏丝氨酸的极性侧链,影响异亮氨酸的紧密疏水性相互作用,使 MINPP1 的结构不稳定。上述基因型和表型的重叠极不可能是偶然的。MINPP1 是唯一在内质网腔中水解肌醇磷酸盐的酶,多项研究支持其在应激诱导细胞凋亡中的作用。解释疾病机制的病理机制尚不清楚,然而其他几种肌醇磷酸代谢酶(如 INPP5K、FIG4、INPP5E、ITPR1)的基因与神经发育障碍的表型相关。综上所述,我们提出 MINPP1 是一种新的常染色体隐性桥脑小脑发育不良基因。