Suppr超能文献

光合细菌荚膜红假单胞菌中的氢气代谢:生长培养物产生氢气的过程

H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures.

作者信息

Hillmer P, Gest H

出版信息

J Bacteriol. 1977 Feb;129(2):724-31. doi: 10.1128/jb.129.2.724-731.1977.

Abstract

Purple photosynthetic bacteria produce H2 from organic compounds by an anaerobic light-dependent electron transfer process in which nitrogenase functions as the terminal catalyst. It has been established that the H2-evolving function of nitrogenase is inhibited by N2 and ammonium salts, and is maximally expressed in cells growing photoheterotrophically with certain amino acids as sources of nitrogen. In the present studies with Rhodopseudomonas capsulata, nutritional factors affecting the rate and magnitude of H2 photoproduction in cultures growing with amino acid nitrogen sources were examined. The highest H2 yields and rates of formation were observed with the organic acids: lactate, pyruvate, malate, and succinate in media containing glutamate as the N source; under optimal conditions with excess lactate, H2 was produced at rates of ca. 130 ml/h per g(dry weight) of cells. Hydrogen production is significantly influenced by the N/C ratio in the growth substrates; when this ratio exceeds a critical value, free ammonia appears in the medium and H2 is not evolved. In the "standard" lactate + glutamate system, both H2 production and growth are "saturated" at a light intesity of ca. 600 ft-c (6,500 lux). Evolution of H2, however, occurs during growth at lithe intensities as low as 50 to 100 ft-c (540 to 1,080 lux), i.e., under conditions of energy limitation. In circumstances in which energy conversion rate and supplies of reducing power exceed the capacity of the biosynthetic machinery, energy-dependent H2 production presumably represents a regulatory device that facilitates "energy-idling." It appears that even when light intensity (energy) is limiting, a significant fraction of the available reducing power and adenosine 5'-triphosphate is diverted to nitrogenase, resulting in H2 formation and a bioenergetic burden to the cell.

摘要

紫色光合细菌通过厌氧光依赖电子转移过程从有机化合物中产生氢气,在这个过程中固氮酶作为终端催化剂发挥作用。已经确定,固氮酶的产氢功能会受到氮气和铵盐的抑制,并且在以某些氨基酸作为氮源进行光异养生长的细胞中能最大程度地表达。在目前对荚膜红假单胞菌的研究中,研究了影响以氨基酸氮源生长的培养物中氢气光生产速率和产量的营养因素。在以谷氨酸作为氮源的培养基中,使用有机酸乳酸、丙酮酸、苹果酸和琥珀酸时,观察到了最高的氢气产量和生成速率;在含有过量乳酸的最佳条件下,每克(干重)细胞产生氢气的速率约为130毫升/小时。氢气的产生受到生长底物中氮/碳比的显著影响;当这个比例超过临界值时,培养基中会出现游离氨,并且不会产生氢气。在“标准”乳酸 + 谷氨酸系统中,氢气产生和生长在约600英尺烛光(6500勒克斯)的光照强度下都会“饱和”。然而,即使在低至50至100英尺烛光(540至1080勒克斯)的光照强度下生长期间,即能量受限的条件下,也会产生氢气。在能量转换率和还原力供应超过生物合成机制能力的情况下,依赖能量的氢气产生大概代表了一种促进“能量闲置”的调节机制。似乎即使光照强度(能量)有限,很大一部分可用的还原力和腺苷5'-三磷酸也会被转移到固氮酶上,导致氢气形成并给细胞带来生物能量负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4929/235004/0ad3a17dfa4e/jbacter00309-0173-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验