Suppr超能文献

Site-specific trapping of reactive species in low-density lipoprotein oxidation: biological implications.

作者信息

Kalyanaraman B, Joseph J, Parthasarathy S

机构信息

Biophysics Research Institute, Medical College of Wisconsin, Milwaukee 53226.

出版信息

Biochim Biophys Acta. 1993 Jun 12;1168(2):220-7. doi: 10.1016/0005-2760(93)90128-v.

Abstract

Abundant data suggest that the oxidative modification of low-density lipoprotein is mediated by lipid-derived free radicals and aldehydes derived from them. In this report we have addressed the site-specific aspects of low-density lipoprotein modification. To this end, both water-soluble and lipid-soluble spin traps (i.e., diamagnetic organic molecules containing nitroso or nitrone functional groups) were used. Radical adducts were detected by electron spin resonance-spin trapping technique. Biochemical indices of low-density lipoprotein modification were thiobarbituric acid reactive substances formation, electrophoretic mobility and macrophage-mediated uptake of oxidized low-density lipoprotein. Results from this study have shown that the lipophilic spin trap, alpha-phenyl-tert-butyl-N-nitrone, traps a primary low-density lipoprotein lipid-derived radical, while also inhibiting the total oxidative modification in a dose-dependent manner. The more hydrophilic analog, i.e., alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone, appeared to trap the secondary alkyl radicals and did not exert any inhibitory effect on oxidative modification of low-density lipoprotein. The lipophilic nitroso spin trap, 2-methyl-2-nitroso propane, which traps a lipid-derived radical, inhibited the low-density lipoprotein modification as did the water-soluble nitroso analog, 2-hydroxymethyl-2-nitroso propane. However, the water-soluble nitroso analog did not trap the lipid radical. The inhibitory effect of 2-hydroxymethyl-2-nitroso propane was tentatively attributed to trapping of aldehydes. It is conceivable that spin traps can inhibit the oxidative modification of low-density lipoprotein by trapping of the lipid radicals as well as trapping aldehydes formed from lipid peroxidation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验