Suppr超能文献

DNA damage, photorepair, and survival in fish and human cells exposed to UV radiation.

作者信息

Ahmed F E, Setlow R B, Grist E, Setlow N

机构信息

Biology Department, Brookhaven National Laboratory, Upton, New York.

出版信息

Environ Mol Mutagen. 1993;22(1):18-25. doi: 10.1002/em.2850220105.

Abstract

The effect of various wavelengths of UVB radiation on the induction of cyclobutane pyrimidine dimers in fish cells and human fibroblasts and the repair of these lesions were studied using an UV-endonuclease to measure dimers (endonuclease sensitive sites) by sedimentation of radioactive DNA, by gel electrophoresis of unlabeled DNA, and by cell survival. The data show that fish cells have an efficient photoreactivation system at wavelength > 304 nm that reverses cytotoxicity and dimer formation after exposure to filtered sunlamp irradiation of a shorter wavelength (lambda > 290 nm). Shorter wavelengths in UVB (> 304 nm) are more effective in photoreversal than longer ones (> 320 nm). As a consequence, 50-85% of dimers induced by these wavelengths in fish are photoreactivated while they are being formed. A major cytotoxicological lesion is the cyclobutane pyrimidine dimers. Cultured human fibroblasts do not possess such a repair system. These results indicate that sunlamp irradiation has wavelengths that both damage and repair DNA.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验