Suppr超能文献

Cerebral cortex Gs alpha protein levels and forskolin-stimulated cyclic AMP formation are increased in bipolar affective disorder.

作者信息

Young L T, Li P P, Kish S J, Siu K P, Kamble A, Hornykiewicz O, Warsh J J

机构信息

Section of Biochemical Psychiatry, Clarke Institute of Psychiatry, Toronto, Ontario, Canada.

出版信息

J Neurochem. 1993 Sep;61(3):890-8. doi: 10.1111/j.1471-4159.1993.tb03600.x.

Abstract

Experimental animal and peripheral blood cell studies point to guanine nucleotide regulatory (G) protein disturbances in bipolar affective disorder. We have previously reported elevated prefrontal cortex Gs alpha protein in bipolar affective disorder and have now extended these preliminary observations in a larger number of subjects, assessing the brain regional specificity of these changes in greater detail, determining the functional biochemical correlates of such changes, and evaluating their diagnostic specificity. Membrane G protein (Gs alpha, Gi alpha, Go alpha, and G beta) immunoreactivities were estimated by western blotting in postmortem brain regions obtained from 10 patients with a DSMIII-R diagnosis of bipolar affective disorder and 10 nonpsychiatric controls matched on the basis of age, postmortem delay, and brain pH. To examine whether there were functional correlates to the observed elevated Gs alpha levels, basal and GTP gamma S- and forskolin-stimulated cyclic AMP production was determined in the same brain regions. Compared with controls, Gs alpha (52-kDa species) immunoreactivity was significantly (p < 0.05) elevated in prefrontal (+36%), temporal (+65%), and occipital (+96%) cortex but not in hippocampus (+28%), thalamus (-23%), or cerebellum (+21%). In contrast, no significant differences were found in the other G protein subunits (Gi alpha, Go alpha, G beta) measured in these regions. Forskolin-stimulated cyclic AMP production was significantly increased in temporal (+31%) and occipital (+96%) cortex but not in other regions. No significant differences were apparent in basal or GTP gamma S-stimulated cyclic AMP production.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验