Suppr超能文献

序列进化的网络模型。

Network models for sequence evolution.

作者信息

von Haeseler A, Churchill G A

机构信息

Department of Zoology, University of Munich, Federal Republic of Germany.

出版信息

J Mol Evol. 1993 Jul;37(1):77-85. doi: 10.1007/BF00170465.

Abstract

We introduce a general class of models for sequence evolution that includes network phylogenies. Networks, a generalization of strictly tree-like phylogenies, are proposed to model situations where multiple lineages contribute to the observed sequences. An algorithm to compute the probability distribution of binary character-state configurations is presented and statistical inference for this model is developed in a likelihood framework. A stepwise procedure based on likelihood ratios is used to explore the space of models. Starting with a star phylogeny, new splits (nontrivial bipartitions of the sequence set) are successively added to the model until no significant change in the likelihood is observed. A novel feature of our approach is that the new splits are not necessarily constrained to be consistent with a treelike mode of evolution. The fraction of invariable sites is estimated by maximum likelihood simultaneously with other model parameters and is essential to obtain a good fit to the data. The effect of finite sequence length on the inference methods is discussed. Finally, we provide an illustrative example using aligned VP1 genes from the foot and mouth disease viruses (FMDV). The different serotypes of the FMDV exhibit a range of treelike and network evolutionary relationships.

摘要

我们介绍了一类用于序列进化的通用模型,其中包括网络系统发育树。网络是严格树状系统发育树的推广,被用于对多个谱系对观测序列有贡献的情况进行建模。本文提出了一种计算二元字符状态配置概率分布的算法,并在似然框架下对该模型进行了统计推断。基于似然比的逐步过程用于探索模型空间。从星状系统发育树开始,新的分裂(序列集的非平凡二分法)被相继添加到模型中,直到似然性没有显著变化。我们方法的一个新颖之处在于,新的分裂不一定受限于与树状进化模式一致。不变位点的比例与其他模型参数同时通过最大似然法进行估计,并且对于获得与数据的良好拟合至关重要。讨论了有限序列长度对推断方法的影响。最后,我们提供了一个使用口蹄疫病毒(FMDV)的比对VP1基因的示例。FMDV的不同血清型表现出一系列树状和网络进化关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验