Ryder O A, Chemnick L G
Center for Reproduction of Endangered Species, Zoological Society of San Diego, CA 92112-0551.
J Hered. 1993 Sep-Oct;84(5):405-9. doi: 10.1093/oxfordjournals.jhered.a111362.
Wild-born orang utans held in zoos do not have their geographic origins defined, which has complicated comparisons of the two subspecies of orang utans (Bornean orang utans, Pongo pygmaeus pygmaeus, and Sumatran orang utans, P. pygmaeus abelii). The resulting confusion concerning the subspecies identity of individual orang utans and a larger controversy over the desirability of utilizing subspecies designations in orang utan breeding programs has focused attention on the need for a phylogenetic analysis of the species and an examination of the appropriateness of the subspecific designations. Previous studies have suggested that an inversion in the second chromosome pair (PPY2) is a diagnostic subspecies marker and that mitochondrial DNA (mtDNA) and nuclear genetic markers may also be used to identify the subspecies origin of individual orang utans. In an effort to assist zoological parks in examining the question of genetic divergence of orang utan subspecies, we have studied the chromosomes of 144 orang utans, including 58 wild-born individuals. To gain insight into phylogenetic divisions of these apes, mtDNA restriction cleavage site variation has been investigated in 14 individuals whose karyotypic status was known. These investigations have confirmed the existence of two phylogenetic lineages of orang utans based on mtDNA cleavage patterns and demonstrated that these lineages correspond with the two populations characterized by the G-banded morphology of the second pair of chromosomes. The two orang utan phylogenetic units comprise individuals that generally conform to the recognized allopatric, morphological subspecies. Based on current knowledge, the view that the named orangutan subspecies each constitute a distinct phylogenetic lineage more consistent with species-level divergence is supported.
圈养的野生出生的红毛猩猩没有明确的地理起源,这使得对红毛猩猩的两个亚种(婆罗洲红毛猩猩,Pongo pygmaeus pygmaeus,和苏门答腊红毛猩猩,P. pygmaeus abelii)进行比较变得复杂。由此产生的关于个体红毛猩猩亚种身份的混淆,以及在红毛猩猩繁殖计划中使用亚种分类的可取性方面的更大争议,都将注意力集中在对该物种进行系统发育分析以及审查亚种分类的适当性的必要性上。先前的研究表明,第二对染色体(PPY2)的倒位是一个诊断亚种的标记,线粒体DNA(mtDNA)和核基因标记也可用于识别个体红毛猩猩的亚种起源。为了帮助动物园研究红毛猩猩亚种的遗传分化问题,我们研究了144只红毛猩猩的染色体,其中包括58只野生出生的个体。为了深入了解这些猿类的系统发育划分,我们对14只核型状态已知的个体的mtDNA限制性酶切位点变异进行了研究。这些研究基于mtDNA酶切模式证实了红毛猩猩存在两个系统发育谱系,并表明这些谱系与以第二对染色体的G带形态为特征的两个种群相对应。这两个红毛猩猩系统发育单元所包含的个体通常符合公认的异域形态亚种。基于目前的知识,支持这样一种观点,即命名的红毛猩猩亚种各自构成一个与物种水平分化更一致的独特系统发育谱系。