Suppr超能文献

功能连接性:大型(正电子发射断层扫描)数据集的主成分分析

Functional connectivity: the principal-component analysis of large (PET) data sets.

作者信息

Friston K J, Frith C D, Liddle P F, Frackowiak R S

机构信息

MRC Cyclotron Unit, Hammersmith Hospital, London, U.K.

出版信息

J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14. doi: 10.1038/jcbfm.1993.4.

Abstract

The distributed brain systems associated with performance of a verbal fluency task were identified in a nondirected correlational analysis of neurophysiological data obtained with positron tomography. This analysis used a recursive principal-component analysis developed specifically for large data sets. This analysis is interpreted in terms of functional connectivity, defined as the temporal correlation of a neurophysiological index measured in different brain areas. The results suggest that the variance in neurophysiological measurements, introduced experimentally, was accounted for by two independent principal components. The first, and considerably larger, highlighted an intentional brain system seen in previous studies of verbal fluency. The second identified a distributed brain system including the anterior cingulate and Wernicke's area that reflected monotonic time effects. We propose that this system has an attentional bias.

摘要

在对通过正电子断层扫描获得的神经生理数据进行无向相关分析时,确定了与言语流畅性任务表现相关的分布式脑系统。该分析使用了专门为大型数据集开发的递归主成分分析。这种分析是根据功能连接性来解释的,功能连接性被定义为在不同脑区测量的神经生理指标的时间相关性。结果表明,实验引入的神经生理测量中的方差由两个独立的主成分解释。第一个,也是大得多的一个,突出了先前言语流畅性研究中发现的一个有意的脑系统。第二个确定了一个包括前扣带回和韦尼克区的分布式脑系统,该系统反映了单调的时间效应。我们认为这个系统存在注意力偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验