Suppr超能文献

如何整合原发性乳腺癌中类固醇激素受体、流式细胞术及其他预后信息。

How to integrate steroid hormone receptor, flow cytometric, and other prognostic information in regard to primary breast cancer.

作者信息

Clark G M, Wenger C R, Beardslee S, Owens M A, Pounds G, Oldaker T, Vendely P, Pandian M R, Harrington D, McGuire W L

机构信息

Department of Medicine/Medical Oncology, University of Texas Health Science Center, San Antonio 78284-7884.

出版信息

Cancer. 1993 Mar 15;71(6 Suppl):2157-62. doi: 10.1002/1097-0142(19930315)71:6+<2157::aid-cncr2820711606>3.0.co;2-o.

Abstract

A large group of patients with node-positive breast cancer was divided into a training set (n = 851) and a validation set (n = 432) to demonstrate techniques for integrating steroid hormone receptor status, DNA flow cytometric findings, and other prognostic factors to predict patient survival. Multivariate analyses showed that estrogen receptor status, the number of involved axillary lymph nodes, patient age, S-phase fraction, progesterone receptor status, and tumor size were significant predictors of survival in patients with node-positive breast cancer. Techniques for optimizing and validating a cut point for a new prognostic factor and for examining alternative representations of prognostic factors were demonstrated. Prognostic indexes were created that could be used to identify patients with very good or very poor prognoses.

摘要

一大组淋巴结阳性乳腺癌患者被分为训练集(n = 851)和验证集(n = 432),以展示整合类固醇激素受体状态、DNA流式细胞术结果及其他预后因素来预测患者生存的技术。多变量分析显示,雌激素受体状态、腋窝淋巴结受累数目、患者年龄、S期分数、孕激素受体状态和肿瘤大小是淋巴结阳性乳腺癌患者生存的显著预测因素。展示了优化和验证新预后因素切点以及检查预后因素替代表示形式的技术。创建了可用于识别预后非常好或非常差患者的预后指数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验