Suppr超能文献

变形链球菌果糖基转移酶(ftf)和葡糖基转移酶(gtfBC)操纵子融合菌株的连续培养

Streptococcus mutans fructosyltransferase (ftf) and glucosyltransferase (gtfBC) operon fusion strains in continuous culture.

作者信息

Wexler D L, Hudson M C, Burne R A

机构信息

Department of Dental Research, University of Rochester Medical Center, New York 14642.

出版信息

Infect Immun. 1993 Apr;61(4):1259-67. doi: 10.1128/iai.61.4.1259-1267.1993.

Abstract

Three glucosyltransferases (GTFs), which catalyze the formation of water-insoluble adherent glucans, and fructosyltransferase (FTF), which synthesizes fructans, are believed to contribute to the pathogenic potential of Streptococcus mutans. Study of the regulation of expression of GTF and FTF has been difficult because of the complexity and number of exoenzymes produced by this bacterium. By using continuous chemostat culture to control environmental conditions, chloramphenicol acetyltransferase (CAT) operon fusions were utilized to measure transcriptional activity of the ftf and gtfBC gene promoters. Expression of these operon fusions was differentially regulated in response to culture pH and growth rate and during transition states between growth domains. Furthermore, the addition of sucrose to steady-state cultures resulted in significant increases in CAT specific activities for both fusions. In a few cases, GTF and FTF enzyme specific activities did not parallel those of the corresponding CAT fusion activities; this lack of correspondence was likely due to posttranscriptional events controlling enzyme secretion and enzyme activity, as well as to the differential expression of dextranase(s) and fructan hydrolase by S. mutans. These results clearly demonstrate that the extracellular polymer synthesis machinery of S. mutans is regulated in a complex manner. The use of operon fusions in combination with chemostat culture is a viable approach to analyzing gene expression in S. mutans and will be helpful in defining the molecular mechanisms underlying regulation of expression of virulence attributes under conditions that may more closely mimic those in dental plaque.

摘要

三种催化形成水不溶性粘附葡聚糖的葡糖基转移酶(GTF)和合成果聚糖的果糖基转移酶(FTF)被认为有助于变形链球菌的致病潜力。由于该细菌产生的胞外酶的复杂性和数量众多,对GTF和FTF表达调控的研究一直很困难。通过使用连续恒化器培养来控制环境条件,利用氯霉素乙酰转移酶(CAT)操纵子融合来测量ftf和gtfBC基因启动子的转录活性。这些操纵子融合的表达在响应培养物pH值和生长速率以及生长域之间的过渡状态时受到差异调节。此外,向稳态培养物中添加蔗糖会导致两种融合的CAT比活性显著增加。在少数情况下,GTF和FTF酶的比活性与相应的CAT融合活性不平行;这种缺乏对应关系可能是由于控制酶分泌和酶活性的转录后事件,以及变形链球菌对葡聚糖酶和果聚糖水解酶的差异表达。这些结果清楚地表明,变形链球菌的细胞外聚合物合成机制受到复杂的调控。将操纵子融合与恒化器培养相结合是分析变形链球菌基因表达的一种可行方法,将有助于确定在可能更接近牙菌斑情况的条件下,毒力属性表达调控的分子机制。

相似文献

2
Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbohydrate.
Microbiology (Reading). 2001 Oct;147(Pt 10):2841-2848. doi: 10.1099/00221287-147-10-2841.
3
RegM is required for optimal fructosyltransferase and glucosyltransferase gene expression in Streptococcus mutans.
FEMS Microbiol Lett. 2004 Nov 1;240(1):75-9. doi: 10.1016/j.femsle.2004.09.012.
5
Genetic regulation of fructosyltransferase in Streptococcus mutans.
Infect Immun. 1994 Apr;62(4):1241-51. doi: 10.1128/iai.62.4.1241-1251.1994.
6
Streptococcus mutans fructosyltransferase interactions with glucans.
FEMS Microbiol Lett. 2004 Mar 12;232(1):39-43. doi: 10.1016/S0378-1097(04)00065-5.
7
Regulation of expression of Streptococcus mutans genes important to virulence.
Infect Immun. 1990 Feb;58(2):464-70. doi: 10.1128/iai.58.2.464-470.1990.
10
Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose.
J Med Microbiol. 2007 Nov;56(Pt 11):1528-1535. doi: 10.1099/jmm.0.47146-0.

引用本文的文献

1
Formation of Mono-Organismal and Mixed and Biofilms in the Presence of NaCl.
Microorganisms. 2025 May 13;13(5):1118. doi: 10.3390/microorganisms13051118.
3
Exopolysaccharides metabolism and cariogenesis of biofilm regulated by antisense RNA.
J Oral Microbiol. 2023 Apr 28;15(1):2204250. doi: 10.1080/20002297.2023.2204250. eCollection 2023.
4
Inhibition of Streptococcus mutans Biofilm Formation by the Joint Action of Oxyresveratrol and Lactobacillus casei.
Appl Environ Microbiol. 2022 May 10;88(9):e0243621. doi: 10.1128/aem.02436-21. Epub 2022 Apr 13.
6
Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans.
Int J Oral Sci. 2021 Sep 30;13(1):30. doi: 10.1038/s41368-021-00137-1.
7
Effect of epigallocatechin gallate on dental biofilm of Streptococcus mutans: An in vitro study.
BMC Oral Health. 2021 Sep 15;21(1):447. doi: 10.1186/s12903-021-01798-4.
8
Antibacterial and antioxidant effect of ethanol extracts of Terminalia chebula on Streptococcus mutans.
Clin Exp Dent Res. 2021 Dec;7(6):987-994. doi: 10.1002/cre2.467. Epub 2021 Jun 28.
9
Antimicrobial Effect of a Peptide Containing Novel Oral Spray on .
Biomed Res Int. 2020 Mar 10;2020:6853652. doi: 10.1155/2020/6853652. eCollection 2020.
10
Esterase from a cariogenic bacterium hydrolyzes dental resins.
Acta Biomater. 2018 Apr 15;71:330-338. doi: 10.1016/j.actbio.2018.02.020. Epub 2018 Mar 1.

本文引用的文献

1
Inactivation of cell-associated fructosyltransferase in Streptococcus salivarius.
J Bacteriol. 1981 Dec;148(3):912-8. doi: 10.1128/jb.148.3.912-918.1981.
3
In vitro and in vivo complementation of Streptococcus mutans mutants defective in adherence.
Infect Immun. 1983 Nov;42(2):558-66. doi: 10.1128/iai.42.2.558-566.1983.
4
Biology, immunology, and cariogenicity of Streptococcus mutans.
Microbiol Rev. 1980 Jun;44(2):331-84. doi: 10.1128/mr.44.2.331-384.1980.
5
Selection in chemostats.
Microbiol Rev. 1983 Jun;47(2):150-68. doi: 10.1128/mr.47.2.150-168.1983.
8
Metabolism of levan by oral samples.
J Dent Res. 1968 Nov-Dec;47(6):1080-6. doi: 10.1177/00220345680470061301.
10
Levan degradation by streptococci isolated from human dental plaque.
Arch Oral Biol. 1968 Jul;13(7):827-30. doi: 10.1016/0003-9969(68)90102-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验