Suppr超能文献

一种用于评估干预措施影响的具有修正伽马脆弱性的双变量生存模型。

A bivariate survival model with modified gamma frailty for assessing the impact of interventions.

作者信息

Wassell J T, Moeschberger M L

机构信息

Centers for Disease Control, Division of Surveillance and Epidemiology, Atlanta, GA 30333.

出版信息

Stat Med. 1993 Feb;12(3-4):241-8. doi: 10.1002/sim.4780120308.

Abstract

Bivariate survival analysis models that incorporate random effects or 'frailty' provide a useful framework for determining the effectiveness of interventions. These models are based on the notion that two paired survival times are correlated because they share a common unobserved value of a random variate from a frailty distribution. In some applications, however, investigators may have some information that characterizes pairs and thus provides information about their frailty. Alternatively, there may be an interest in assessing whether the correlation within certain types of pairs is different from the correlation within other types of pairs. In this paper, we present a method to incorporate 'pair-wise' covariate information into the dependence parameter of the bivariate survival function. We provide an example using data from the Framingham Heart Study to investigate the times until the occurrence of two events within an individual: the first detection of hypertension and the first cardiovascular disease event. We model the dependence between these two events as a function of the age of the individual at the time of enrollment into the Framingham Study.

摘要

纳入随机效应或“脆弱性”的双变量生存分析模型为确定干预措施的有效性提供了一个有用的框架。这些模型基于这样一种观念,即两个配对的生存时间是相关的,因为它们共享来自脆弱性分布的随机变量的一个共同未观察值。然而,在某些应用中,研究者可能有一些表征配对的信息,从而提供有关其脆弱性的信息。或者,可能有兴趣评估某些类型配对中的相关性是否与其他类型配对中的相关性不同。在本文中,我们提出一种方法,将“成对”协变量信息纳入双变量生存函数的依赖参数中。我们提供了一个使用弗雷明汉心脏研究数据的示例,以研究个体内两个事件发生的时间:高血压的首次检测和首次心血管疾病事件。我们将这两个事件之间的依赖关系建模为个体在进入弗雷明汉研究时年龄的函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验