Suppr超能文献

Microemboli reduce phase III slopes of CO2 and invert phase III slopes of infused SF6.

作者信息

Schreiner M S, Leksell L G, Gobran S R, Hoffman E A, Scherer P W, Neufeld G R

机构信息

Department of Anesthesia, University of Pennsylvania School of Medicine, Philadelphia.

出版信息

Respir Physiol. 1993 Mar;91(2-3):137-54. doi: 10.1016/0034-5687(93)90095-r.

Abstract

We investigated the effect of increasing doses of intravenously infused glass microspheres (mean diameter 125 microns) on gas exchange in anesthetized, heparinized, mechanically ventilated goats (VT = 16-18 ml/kg). Breath-by-breath CO2 expirograms were collected using a computerized system (Study A) during the infusion of a total of 15 g of microspheres. We found a 50% decrease in extravascular lung water by indicator dilution with a corresponding doubling of alveolar dead space (VDalv). Airways deadspace (VDaw) decreased by 13 ml (10%) and mean normalized phase III slope for CO2 decreased from 0.23 to -0.08 L-1 becoming negative in 3 of 5 animals. In a second study (Study B), simultaneous breath-by-breath CO2 and infused SF6 expirograms were collected using an infrared CO2 analyzer and a mass spectrometer. Under baseline conditions VDaw for CO2 was smaller than for SF6 and the ratio of the phase III slope for SF6 to the phase III slope for CO2 was 1.39. Following embolization there were no differences in VDaw between the two gases, however, the phase III slope for CO2 became either slightly negative or extremely flat, while the phase III slope for SF6 became negative in 73% of the breaths (-0.17 L-1, P < 0.05). Negative phase III slopes have been predicted by a single path model when blood flow is confined to the most mouthward generations of the acinus (Schwardt et al., Ann. Biomed. Engin, 19: 679-697, 1991). The agreement between the numerical model and the experimental data is consistent with a serial distribution of blood flow within the acinus.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验