Suppr超能文献

统一医学语言系统元词表:呈现生物医学概念的不同视图。

The UMLS Metathesaurus: representing different views of biomedical concepts.

作者信息

Schuyler P L, Hole W T, Tuttle M S, Sherertz D D

机构信息

Medical Subject Headings Section, National Library of Medicine, Bethesda, MD 20894.

出版信息

Bull Med Libr Assoc. 1993 Apr;81(2):217-22.

Abstract

The UMLS Metathesaurus is a compilation of names, relationships, and associated information from a variety of biomedical naming systems representing different views of biomedical practice or research. The Metathesaurus is organized by meaning, and the fundamental unit in the Metathesaurus is the concept. Differing names for a biomedical meaning are linked in a single Metathesaurus concept. Extensive additional information describing semantic characteristics, occurrence in machine-readable information sources, and how concepts co-occur in these sources is also provided, enabling a greater comprehension of the concept in its various contexts. The Metathesaurus is not a standardized vocabulary; it is a tool for maximizing the usefulness of existing vocabularies. It serves as a knowledge source for developers of biomedical information applications and as a powerful resource for biomedical information specialists.

摘要

统一医学语言系统(UMLS)元词表是一个由各种生物医学命名系统中的名称、关系及相关信息汇编而成的集合,这些命名系统代表了生物医学实践或研究的不同视角。元词表按语义进行组织,其基本单元是概念。生物医学意义的不同名称在单个元词表概念中相互关联。同时还提供了大量额外信息,用于描述语义特征、在机器可读信息源中的出现情况以及概念在这些源中的共现方式,从而能在不同语境中更全面地理解概念。元词表不是一个标准化词汇表;它是一个用于最大化现有词汇表效用的工具。它是生物医学信息应用开发者的知识源,也是生物医学信息专家的强大资源。

相似文献

引用本文的文献

1
Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis: A Review.用于癌症诊断和预后的知识驱动型机器学习综述
IEEE Trans Autom Sci Eng. 2025;22:10008-10028. doi: 10.1109/tase.2024.3515839. Epub 2024 Dec 18.
2
PromptLink: Leveraging Large Language Models for Cross-Source Biomedical Concept Linking.PromptLink:利用大语言模型进行跨源生物医学概念链接。
Int ACM SIGIR Conf Res Dev Inf Retr. 2024 Jul;2024:2589-2593. doi: 10.1145/3626772.3657904. Epub 2024 Jul 11.
4
Transformer-based active learning for multi-class text annotation and classification.基于Transformer的多类文本标注与分类的主动学习
Digit Health. 2024 Oct 17;10:20552076241287357. doi: 10.1177/20552076241287357. eCollection 2024 Jan-Dec.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验