Zimmerman R J, Chao H, Fullerton G D, Cameron I L
Department of Radiology, University of Texas Health Science Center, San Antonio 78284.
J Biochem Biophys Methods. 1993 Feb;26(1):61-70. doi: 10.1016/0165-022x(93)90022-g.
A new highly accurate curve-fitting technique for looking at freezing-point depression data was proposed by Fullerton et al. (Biochem. Cell Biol., in press). The method involve plotting mass solvent to mass solute ratio (Mw/M(s)) vs. 1/delta T (i.e. the inverse change in freezing point). A measured molecular weight and a solute/solvent interaction parameter (called I value) are inferred from the resultant linear plot. The accuracy of the molecular weight method was first demonstrated with the monomers of ethylene glycol, glycerol, propanol, mannitol, glucose and sucrose to show a mean molecular weight error of 0.02% with root mean square (RMS) error 0.9%. The RMS error (0.9%) is our best estimate of the molecular weight measurement accuracy for the method applied to a monomer. This error is consistent with the experimental precision (approximately 1%) which implies no systematic error. Non-ideality is described with a single constant, I. Polyethylene glycol (PEG) polymers of increasing length (vendor designation 200 to 10,000 Da) were analyzed to show monotonically increasing non-ideality (I values of 0.12 to 3.67) with increasing molecular weight. The measured molecular weights agreed with the end-point titration value for the three smallest polymers (where the number of polymeric units was less than or equal to 7). The method underestimates the vendor molecular weights for longer polymers. This disagreement is assigned to segmental motion (internal entropy) of longer, more flexible, PEG molecules.
富勒顿等人(《生物化学与细胞生物学》,即将发表)提出了一种用于研究冰点降低数据的新型高精度曲线拟合技术。该方法包括绘制溶剂质量与溶质质量之比(Mw/M(s))对1/ΔT(即冰点的反向变化)的曲线。从所得的线性图中推断出测量的分子量和溶质/溶剂相互作用参数(称为I值)。首先用乙二醇、甘油、丙醇、甘露醇、葡萄糖和蔗糖的单体证明了分子量方法的准确性,结果表明平均分子量误差为0.02%,均方根(RMS)误差为0.9%。RMS误差(0.9%)是我们对应用于单体的该方法分子量测量准确性的最佳估计。该误差与实验精度(约1%)一致,这意味着不存在系统误差。非理想性用一个常数I来描述。对长度不断增加的聚乙二醇(PEG)聚合物(供应商指定为200至10,000 Da)进行了分析,结果表明随着分子量的增加,非理想性单调增加(I值为0.12至3.67)。对于三种最小的聚合物(其中聚合物单元数小于或等于7),测量的分子量与终点滴定值一致。对于较长的聚合物,该方法低估了供应商给出的分子量。这种差异归因于更长、更灵活的PEG分子的链段运动(内熵)。