Fullerton Gary D, Rahal Andres
Department of Radiology, University of Texas Health SA, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, United States.
J Phys Chem B. 2025 Jul 3;129(26):6477-6488. doi: 10.1021/acs.jpcb.5c01583. Epub 2025 Jun 25.
The hydration of macromolecules plays a critical role in powering functional macromolecular shape changes to open/close cellular pores, clip protein chains, and perform a myriad of other functions critical to life. This study of collagen "bound water" offers insight into these processes by quantifying protein hydration energetics powered by ice-bridge formation on protein backbones. Quantification of ice-bridge properties on rat tail tendon is uniquely possible because the elevated stability of mammalian collagen at laboratory temperature provides 100% at-rest in vitro occupancy of backbone tripeptide units serving as ice nucleation sites. Full occupancy =100% provides to calculate enthalpy using known properties of the collagen molecule and bulk water-ice. theory predicts the specific enthalpy of native collagen melting, Δ = 70.31 J/g, in close agreement with experimental measures. This provides, for the first time, a molecular definition of protein-bound water. We used measures of peak temperature of melting to calculate specific entropy of melting Δ = Δ/ These measurements show 100% of collagen entropy of melting Δ = 0.2084 J/g°K in native collagen results from restrictions of the first monolayer water mobility. Penetration of acetate ion from acetic acid used by many to obtain independent tropocollagen molecules increased Δ = 0.2251 J/g°K by altering the molecular first monolayer to form a hydration slurry. The somewhat speculative character of this first paper on collagen ice-bridges has been validated by successful extension of SHIM theory to ectotherm collagen and globular proteins, where interesting changes of partial occupancy, <100%, manipulate functional protein conformations. These papers will be published shortly. Significance. This study of the energetics of water interactions with collagen provides the calculational foundation to quantify water interactions with macromolecules in general. Preliminary studies of globular proteins, DNA, RNA, and cellulose show similar but incomplete ice-bridge formation that makes bridge-quantification on those molecules more difficult. The maximized content of ice-bridges on the ice-nucleation sites of mammalian collagen appears to be unique. The melting and refreezing of ice-bridges on macromolecular backbones provide the molecular mechanism to convert thermal energy into shape change-induced mechanical movements. The molecular constants and associated calculational methodology developed here should allow for more rapid progress in understanding the response of macromolecules to water and important cosolutes such as glucose. The role of glucose in collagen hydration slurry formation clearly plays an important role in progressive organ changes observed in patients with diabetes. This ensures that both basic science and clinical science will find uses for theory.
大分子的水合作用在驱动功能性大分子形状变化以打开/关闭细胞孔、剪切蛋白质链以及执行许多其他对生命至关重要的功能方面起着关键作用。这项对胶原蛋白“结合水”的研究通过量化由蛋白质主链上冰桥形成驱动的蛋白质水合能,深入了解了这些过程。对大鼠尾腱上冰桥特性的量化是独一无二的,因为哺乳动物胶原蛋白在实验室温度下的高稳定性使得作为冰核位点的主链三肽单元在体外静止时占有率达到100%。完全占有率 = 100% 使得能够利用胶原蛋白分子和大量水 - 冰的已知特性来计算焓。理论预测天然胶原蛋白熔化的比焓,Δ = 70.31 J/g,与实验测量结果非常吻合。这首次提供了蛋白质结合水的分子定义。我们利用熔化峰值温度的测量值来计算熔化的比熵 Δ = Δ/ 这些测量表明,天然胶原蛋白中100% 的胶原蛋白熔化熵 Δ = 0.2084 J/g°K 是由第一层水的流动性受限导致的。许多人用来获得独立原胶原蛋白分子的乙酸中乙酸根离子的渗透通过改变分子的第一层形成水合浆液,使 Δ = 0.2251 J/g°K 增加。关于胶原蛋白冰桥的这第一篇论文的某种推测性特征已通过将SHIM理论成功扩展到变温动物胶原蛋白和球状蛋白得到验证,在这些情况下,部分占有率 <100% 的有趣变化会操纵功能性蛋白质构象。这些论文将很快发表。意义。这项关于水与胶原蛋白相互作用能量学的研究为量化一般情况下水与大分子的相互作用提供了计算基础。对球状蛋白、DNA、RNA和纤维素的初步研究表明存在类似但不完全的冰桥形成,这使得对这些分子上的桥进行量化更加困难。哺乳动物胶原蛋白冰核位点上冰桥的最大含量似乎是独一无二的。大分子主链上冰桥的熔化和再冻结提供了将热能转化为形状变化诱导的机械运动的分子机制。这里开发的分子常数和相关计算方法应该能够在理解大分子对水和重要共溶质(如葡萄糖)的响应方面取得更快进展。葡萄糖在胶原蛋白水合浆液形成中的作用显然在糖尿病患者观察到的渐进性器官变化中起着重要作用。这确保了基础科学和临床科学都将发现 理论的用途。