Suppr超能文献

Effect of pH on solubility and ionic state of lipopolysaccharide obtained from the deep rough mutant of Escherichia coli.

作者信息

Din Z Z, Mukerjee P, Kastowsky M, Takayama K

机构信息

Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706.

出版信息

Biochemistry. 1993 May 4;32(17):4579-86. doi: 10.1021/bi00068a014.

Abstract

The dissociation of the highly aggregated form of lipopolysaccharide (LPS) from Gram-negative bacteria to the monomeric (or soluble) form is though to be the initial step in the activation of responding cells (macrophages, B-cells, neutrophils, monocytes, and endothelial cells) by LPS. This process is presently not adequately understood. Using the equilibrium dialysis apparatus and a highly purified and well-characterized radiolabeled deep rough chemotype LPS ([14C]ReLPS) from Escherichia coli D31m4, we have examined the effect of pH on its solubility (CT) and ionic states in aqueous media. The solubility range of [14C]ReLPS suspended in 50 mM Tris-HCl-100 mM KCl buffer (or 50 mM MES-100 mM KCl buffer at pH 6.5) was determined to be from (2.91 +/- 0.01) x 10(-8) to (4.55 +/- 0.07) x 10(-8) M over a pH range of 6.50-8.20, respectively. These experimental data satisfactorily fitted the curve generated by the solubility equation CT = S0(1 + K5/[H+])/([H+]/K4' + 1), where S0 is the concentration of the tetraanionic ReLPS, K5 is the dissociation constant of the tetraanionic ReLPS in solution, and K4' is the dissociation constant of the trianionic ReLPS at the surface of the solid particles in suspension. The increase in solubility of ReLPS with increase in pH from 7.00 to 8.20 is primarily caused by the formation of the pentaanionic form from the tetraanions. The pK5 (primarily the second dissociation of the 1-phosphate) of ReLPS was determined to be 8.58 from experimental data.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验