Davidian M, Giltinan D M
Department of Statistics, North Carolina State University, Raleigh 27695-8203.
J Biopharm Stat. 1993 Mar;3(1):23-55. doi: 10.1080/10543409308835047.
A nonlinear mixed-effects model suitable for characterizing repeated measurement data is described. The model allows dependence of random coefficients on covariate information and accommodates general specifications of a common intraindividual covariance structure, such as models for variance within individuals that depend on individual mean response and autocorrelation. Two classes of procedures for estimation in this model are described, which incorporate estimation of unknown parameters in the assumed intraindividual covariance structure. The procedures are straightforward to implement using standard statistical software. The techniques are illustrated by examples in growth analysis and assay development.
本文描述了一种适用于刻画重复测量数据的非线性混合效应模型。该模型允许随机系数依赖于协变量信息,并能适应常见个体内协方差结构的一般规范,例如依赖个体平均响应和自相关的个体内方差模型。文中描述了该模型的两类估计方法,其中包含了对假定个体内协方差结构中未知参数的估计。这些方法使用标准统计软件即可轻松实现。通过生长分析和分析方法开发中的实例对这些技术进行了说明。