Suppr超能文献

一种用于随机系数微分方程模型的两阶段估计方法及其在纵向HIV动态数据中的应用

A Two-Stage Estimation Method for Random Coefficient Differential Equation Models with Application to Longitudinal HIV Dynamic Data.

作者信息

Fang Yun, Wu Hulin, Zhu Li-Xing

机构信息

East China Normal University, University of Rochester and Hong Kong Baptist University.

出版信息

Stat Sin. 2011 Jul;21(3):1145-1170. doi: 10.5705/ss.2009.156.

Abstract

We propose a two-stage estimation method for random coefficient ordinary differential equation (ODE) models. A maximum pseudo-likelihood estimator (MPLE) is derived based on a mixed-effects modeling approach and its asymptotic properties for population parameters are established. The proposed method does not require repeatedly solving ODEs, and is computationally efficient although it does pay a price with the loss of some estimation efficiency. However, the method does offer an alternative approach when the exact likelihood approach fails due to model complexity and high-dimensional parameter space, and it can also serve as a method to obtain the starting estimates for more accurate estimation methods. In addition, the proposed method does not need to specify the initial values of state variables and preserves all the advantages of the mixed-effects modeling approach. The finite sample properties of the proposed estimator are studied via Monte Carlo simulations and the methodology is also illustrated with application to an AIDS clinical data set.

摘要

我们提出了一种用于随机系数常微分方程(ODE)模型的两阶段估计方法。基于混合效应建模方法推导了最大伪似然估计器(MPLE),并建立了其总体参数的渐近性质。所提出的方法不需要反复求解常微分方程,虽然在估计效率上有所损失,但计算效率很高。然而,当由于模型复杂性和高维参数空间导致精确似然方法失败时,该方法确实提供了一种替代方法,并且它还可以作为一种获得更精确估计方法的初始估计值的方法。此外,所提出的方法不需要指定状态变量的初始值,并保留了混合效应建模方法的所有优点。通过蒙特卡罗模拟研究了所提出估计器的有限样本性质,并将该方法应用于一个艾滋病临床数据集进行了说明。

相似文献

3
Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models.
J Am Stat Assoc. 2008 Dec 1;103(484):1570-1583. doi: 10.1198/016214508000000797.
4
Parameter Estimation for Semiparametric Ordinary Differential Equation Models.
Commun Stat Theory Methods. 2019;48(24):5985-6004. doi: 10.1080/03610926.2018.1523433. Epub 2018 Dec 29.
6
Generalized Ordinary Differential Equation Models.
J Am Stat Assoc. 2014 Oct;109(508):1672-1682. doi: 10.1080/01621459.2014.957287.
7
Application of one-step method to parameter estimation in ODE models.
Stat Neerl. 2018 May;72(2):126-156. doi: 10.1111/stan.12124. Epub 2018 Feb 22.
9
Collaborative double robust targeted maximum likelihood estimation.
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.

引用本文的文献

本文引用的文献

1
Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models.
J Am Stat Assoc. 2008 Dec 1;103(484):1570-1583. doi: 10.1198/016214508000000797.
2
Differential equation modeling of HIV viral fitness experiments: model identification, model selection, and multimodel inference.
Biometrics. 2009 Mar;65(1):292-300. doi: 10.1111/j.1541-0420.2008.01059.x. Epub 2008 May 28.
3
Maximum likelihood estimation in dynamical models of HIV.
Biometrics. 2007 Dec;63(4):1198-206. doi: 10.1111/j.1541-0420.2007.00812.x. Epub 2007 May 8.
4
Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system.
Biometrics. 2006 Jun;62(2):413-23. doi: 10.1111/j.1541-0420.2005.00447.x.
5
Statistical methods for HIV dynamic studies in AIDS clinical trials.
Stat Methods Med Res. 2005 Apr;14(2):171-92. doi: 10.1191/0962280205sm390oa.
7
Estimation and inference for a spline-enhanced population pharmacokinetic model.
Biometrics. 2002 Sep;58(3):601-11. doi: 10.1111/j.0006-341x.2002.00601.x.
8
A Bayesian approach to parameter estimation in HIV dynamical models.
Stat Med. 2002 Aug 15;21(15):2199-214. doi: 10.1002/sim.1211.
10
Nonparametric mixed effects models for unequally sampled noisy curves.
Biometrics. 2001 Mar;57(1):253-9. doi: 10.1111/j.0006-341x.2001.00253.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验